6,280 research outputs found

    Decays of metastable vacua in SQCD

    Full text link
    The decay rates of metastable SQCD vacua in ISS-type models, both towards supersymmetric vacua as well as towards other nonsupersymmetric configurations arising in theories with elementary spectators, are estimated numerically in the semiclassical approximation by computing the corresponding multifield bounce configurations. The scaling of the bounce action with respect to the most relevant dimensionless couplings and ratios of scales is analyzed. In the case of the decays towards the susy vacua generated by nonperturbative effects, the results confirm previous analytical estimations of this scaling, obtained by assuming a triangular potential barrier. The decay rates towards susy vacua generated by R-symmetry breaking interactions turn out to be more than sufficiently suppressed for the phenomenologically relevant parameter range, and their behavior in this regime differs from analytic estimations valid for parametrically small scale ratios. It is also shown that in models with spectator fields, even though the decays towards vacua involving nonzero spectator VEVs don't have a strong parametric dependence on the scale ratios, the ISS vacuum can still be made long-lived in the presence of R-symmetry breaking interactions.Comment: 22 pages, 7 figure

    Improving hyperspectral band selection by constructing an estimated reference map

    Get PDF
    We investigate band selection for hyperspectral image classification. Mutual information (MI) measures the statistical dependence between two random variables. By modeling the reference map as one of the two random variables, MI can, therefore, be used to select the bands that are more useful for image classification. A new method is proposed to estimate the MI using an optimally constructed reference map, reducing reliance on ground-truth information. To reduce the interferences from noise and clutters, the reference map is constructed by averaging a subset of spectral bands that are chosen with the best capability to approximate the ground truth. To automatically find these bands, we develop a searching strategy consisting of differentiable MI, gradient ascending algorithm, and random-start optimization. Experiments on AVIRIS 92AV3C dataset and Pavia University scene dataset show that the proposed method outperformed the benchmark methods. In AVIRIS 92AV3C dataset, up to 55% of bands can be removed without significant loss of classification accuracy, compared to the 40% from that using the reference map accompanied with the dataset. Meanwhile, its performance is much more robust to accuracy degradation when bands are cut off beyond 60%, revealing a better agreement in the MI calculation. In Pavia University scene dataset, using 45 bands achieved 86.18% classification accuracy, which is only 1.5% lower than that using all the 103 bands

    The Mechanics and Statistics of Active Matter

    Get PDF
    Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behaviour of collections of active particles -- active matter -- with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogues. Theory and experiment are discussed side by side.Comment: This review is to appear in volume 1 of the Annual Review of Condensed Matter Physics in July 2010 and is posted here with permission from that journa

    Impact of generic alendronate cost on the cost-effectiveness of osteoporosis screening and treatment

    Get PDF
    Introduction: Since alendronate became available in generic form in the Unites States in 2008, its price has been decreasing. The objective of this study was to investigate the impact of alendronate cost on the cost-effectiveness of osteoporosis screening and treatment in postmenopausal women. Methods: Microsimulation cost-effectiveness model of osteoporosis screening and treatment for U.S. women age 65 and older. We assumed screening initiation at age 65 with central dual-energy x-ray absorptiometry (DXA), and alendronate treatment for individuals with osteoporosis; with a comparator of "no screening" and treatment only after fracture occurrence. We evaluated annual alendronate costs of 20through20 through 800; outcome measures included fractures; nursing home admission; medication adverse events; death; costs; quality-adjusted life-years (QALYs); and incremental cost-effectiveness ratios (ICERs) in 2010 U.S. dollars per QALY gained. A lifetime time horizon was used, and direct costs were included. Base-case and sensitivity analyses were performed. Results: Base-case analysis results showed that at annual alendronate costs of 200orless,osteoporosisscreeningfollowedbytreatmentwascostsaving,resultinginlowertotalcoststhannoscreeningaswellasmoreQALYs(10.6additionalqualityadjustedlifedays).Whenassumingalendronatecostsof200 or less, osteoporosis screening followed by treatment was cost-saving, resulting in lower total costs than no screening as well as more QALYs (10.6 additional quality-adjusted life-days). When assuming alendronate costs of 400 through 800,screeningandtreatmentresultedingreaterlifetimecoststhannoscreeningbutwashighlycosteffective,withICERsrangingfrom800, screening and treatment resulted in greater lifetime costs than no screening but was highly cost-effective, with ICERs ranging from 714 per QALY gained through 13,902perQALYgained.Probabilisticsensitivityanalysesrevealedthatthecosteffectivenessofosteoporosisscreeningfollowedbyalendronatetreatmentwasrobusttojointinputparameterestimatevariationatawillingnesstopaythresholdof13,902 per QALY gained. Probabilistic sensitivity analyses revealed that the cost-effectiveness of osteoporosis screening followed by alendronate treatment was robust to joint input parameter estimate variation at a willingness-to-pay threshold of 50,000/QALY at all alendronate costs evaluated. Conclusions: Osteoporosis screening followed by alendronate treatment is effective and highly cost-effective for postmenopausal women across a range of alendronate costs, and may be cost-saving at annual alendronate costs of $200 or less. © 2012 Nayak et al

    Condensate cosmology in O'Raifeartaigh models

    Full text link
    Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for publication in JHE

    Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmelt-Dominated Headwater Catchments

    Get PDF
    Terrestrial and aquatic elemental cycles are tightly linked in upland fluvial networks. Biotic and abiotic mineral weathering, microbially mediated degradation of organic matter, and anthropogenic influences all result in the movement of solutes (e.g., carbon, metals, and nutrients) through these catchments, with implications for downstream water quality. Within the river channel, the region of hyporheic mixing represents a hot spot of microbial activity, exerting significant control over solute cycling. To investigate how snowmelt-driven seasonal changes in river discharge affect microbial community assembly and carbon biogeochemistry, depth-resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO, USA. Vertical temperature sensor arrays were also installed in the streambed to enable seepage flux estimates. Snowmelt-driven high river discharge led to an expanding zone of vertical hyporheic mixing and introduced dissolved oxygen into the streambed that stimulated aerobic microbial respiration. These physicochemical processes contributed to microbial communities undergoing homogenizing selection, in contrast to other ecosystems where lower permeability may limit the extent of mixing. Conversely, lower river discharge conditions led to a greater influence of upwelling groundwater within the streambed and a decrease in microbial respiration rates. Associated with these processes, microbial communities throughout the streambed exhibited increasing dissimilarity between each other, suggesting that the earlier onset of snowmelt and longer periods of base flow may lead to changes in the composition (and associated function) of streambed microbiomes, with consequent implications for the processing and export of solutes from upland catchments

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Interview with Nelson R. Haas, Sr.

    Get PDF
    Discusses Charles F. Kettering, Engineers Club, Delco, and Edward A. (Colonel) Deeds

    On the Validity of the Name teyahalee as Applied to a Member of the Plethodon glutinosus Complex (Caudata: Plethodontidae): A New Name

    Get PDF
    The name Plethodon teyahalee (Hairston) cannot be applied to the member of the P. glutinosus complex as designated by Highton (1983). Biochemical data show that the population from which the type of teyahelee was taken consists of hybrids between local populations representing the P. jordani and P. glutinosus complexes, and thus cannot be applied to a member of either of those two species under Article 23(h) of the International Code of Zoological Nomenclature (1985). A new name, P lethodon oconaluftee, is proposed, and a new type is designated
    corecore