164 research outputs found

    Direct Measurement of 2D and 3D Interprecipitate Distance Distributions from Atom-Probe Tomographic Reconstructions

    Full text link
    Edge-to-edge interprecipitate distance distributions are critical for predicting precipitation strengthening of alloys and other physical phenomena. A method to calculate this 3D distance and the 2D interplanar distance from atom-probe tomographic data is presented. It is applied to nanometer-sized Cu-rich precipitates in an Fe-1.7 at.% Cu alloy. Experimental interprecipitate distance distributions are discussed

    Inter-cluster reactivity of Metallo-aromatic and anti-aromatic Compounds and Their Applications in Molecular Electronics: A Theoretical Investigation

    Full text link
    Local reactivity descriptors such as the condensed local softness and Fukui function have been employed to investigate the inter-cluster reactivity of the metallo-aromatic (Al4Li- and Al4Na-) and anti-aromatic (Al4Li4 and Al4Na4) compounds. We use the concept of group softness and group Fukui function to study the strength of the nucleophilicity of the Al4 unit in these compounds. Our analysis shows that the trend of nucleophilicity of the Al4 unit in the above clusters is as follows; Al4Li- > Al4Na- > Al4Li4 > Al4Na 4 For the first time we have used the reactivity descriptors to show that these clusters can act as electron donating systems and thus can be used as a molecular cathode.Comment: 23 pages, 1 figure and 1 table of conten

    Inductive detection of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers

    Get PDF
    Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the dampinglike spin-to-charge conversion

    Evidence of extreme domain wall speeds under ultrafast optical excitation

    Full text link
    Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold-dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of \approx 66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, non-equilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.Comment: 5 pages, 4 figures; Supplemental Material: 8 pages, 9 figure

    Room temperature precipitation in quenched Al-Cu-Mg alloys: a model for the reaction kinetics and yield strength development

    No full text
    The microstructural evolution during low temperature ageing of two commercial purity alloys (Al-1.2Cu-1.2Mg-0.2Mn and Al-1.9Cu-1.6Mg-0.2Mn at.%) was investigated. The initial stage of hardening in these alloys is very rapid, with the alloys nearly doubling in hardness during 20 h ageing at room temperature. The microstructural evolution during this stage of hardening was investigated using differential scanning calorimetry (DSC), isothermal calorimetry and three-dimensional atom probe analysis (3DAP). It is found that during the hardening a substantial exothermic heat evolution occurs and that the only microstructural change involves the formation of Cu-Mg co-clusters. The kinetics of cluster formation is analysed and the magnitude of the hardening is discussed on the basis of a model incorporating solid solution hardening and modulus hardening originating from the difference in modulus between Al and clusters

    Quantifying Spin Mixed States in Ferromagnets

    Get PDF
    We quantify the presence of spin mixed states in ferromagnetic 3D transition metals by precise measurement of the orbital moment. While central to phenomena such as Elliot Yafet scattering, quantification of the spin mixing parameter has hitherto been confined to theoretical calculations. We demonstrate that this information is also available by experimental means. Comparison of ferromagnetic resonance spectroscopy with x ray magnetic circular dichroism results show that Kittel s original derivation of the spectroscopic g factor requires modification, to include spin mixing of valence band states. Our results are supported by ab initio relativistic electronic structure theor

    Ultrafast domain dilation induced by optical pumping in ferromagnetic CoFe/Ni multilayers

    Full text link
    Ultrafast optical pumping of systems with spatially nonuniform magnetic textures is known to cause far-from-equilibrium spin transport effects, such as the broadening of domain-walls. Here, we study the dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers subject to a femtosecond optical pump and find an ultrafast domain dilation by 6% within 1.6 ps. This surprising result is based on the unambiguous determination of a harmonically-related shift of ultrafast magnetic X-ray diffraction for the first- and third-order rings. Domain dilation is plausible from conservation of momentum arguments, whereby inelastic scattering from a hot, quasi-ballistic, radial current transfers momentum to the magnetic domains. Our results suggest a potentially rich variety of unexpected physical phenomena associated with far-from-equilibrium inelastic electron-magnon scattering processes in the presence of spin textures
    corecore