342 research outputs found
Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach
Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
Optimizing fire station locations for the Istanbul metropolitan municipality
Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years
Streaming Algorithms for Submodular Function Maximization
We consider the problem of maximizing a nonnegative submodular set function
subject to a -matchoid
constraint in the single-pass streaming setting. Previous work in this context
has considered streaming algorithms for modular functions and monotone
submodular functions. The main result is for submodular functions that are {\em
non-monotone}. We describe deterministic and randomized algorithms that obtain
a -approximation using -space, where is
an upper bound on the cardinality of the desired set. The model assumes value
oracle access to and membership oracles for the matroids defining the
-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201
Satisfiability Modulo Transcendental Functions via Incremental Linearization
In this paper we present an abstraction-refinement approach to Satisfiability
Modulo the theory of transcendental functions, such as exponentiation and
trigonometric functions. The transcendental functions are represented as
uninterpreted in the abstract space, which is described in terms of the
combined theory of linear arithmetic on the rationals with uninterpreted
functions, and are incrementally axiomatized by means of upper- and
lower-bounding piecewise-linear functions. Suitable numerical techniques are
used to ensure that the abstractions of the transcendental functions are sound
even in presence of irrationals. Our experimental evaluation on benchmarks from
verification and mathematics demonstrates the potential of our approach,
showing that it compares favorably with delta-satisfiability /interval
propagation and methods based on theorem proving
On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives
We study a class of procurement auctions with a budget constraint, where an
auctioneer is interested in buying resources or services from a set of agents.
Ideally, the auctioneer would like to select a subset of the resources so as to
maximize his valuation function, without exceeding a given budget. As the
resources are owned by strategic agents however, our overall goal is to design
mechanisms that are truthful, budget-feasible, and obtain a good approximation
to the optimal value. Budget-feasibility creates additional challenges, making
several approaches inapplicable in this setting. Previous results on
budget-feasible mechanisms have considered mostly monotone valuation functions.
In this work, we mainly focus on symmetric submodular valuations, a prominent
class of non-monotone submodular functions that includes cut functions. We
begin first with a purely algorithmic result, obtaining a
-approximation for maximizing symmetric submodular functions
under a budget constraint. We view this as a standalone result of independent
interest, as it is the best known factor achieved by a deterministic algorithm.
We then proceed to propose truthful, budget feasible mechanisms (both
deterministic and randomized), paying particular attention on the Budgeted Max
Cut problem. Our results significantly improve the known approximation ratios
for these objectives, while establishing polynomial running time for cases
where only exponential mechanisms were known. At the heart of our approach lies
an appropriate combination of local search algorithms with results for monotone
submodular valuations, applied to the derived local optima.Comment: A conference version appears in WINE 201
Limiting the Influence to Vulnerable Users in Social Networks:A Ratio Perspective
Influence maximization is a key problem in social networks, seeking to find users who will diffuse information to influence a large number of users. A drawback of the standard influence maximization is that it is unethical to influence users many of whom would be harmed, due to their demographics, health conditions, or socioeconomic characteristics (e.g., predominantly overweight people influenced to buy junk food). Motivated by this drawback and by the fact that some of these vulnerable users will be influenced inadvertently, we introduce the problem of finding a set of users (seeds) that limits the influence to vulnerable users while maximizing the influence to the non-vulnerable users. We define a measure that captures the quality of a set of seeds, as an additively smoothed ratio between the expected number of influenced non-vulnerable users and the expected number of influenced vulnerable users. Then, we develop greedy heuristics and an approximation algorithm called ISS for our problem, which aim to find a set of seeds that maximizes the measure. We evaluate our methods on synthetic and real-world datasets and demonstrate that ISS substantially outperforms a heuristic competitor in terms of both effectiveness and efficiency while being more effective and/or efficient than the greedy heuristics
Oxy-fuel combustion of coal and biomass blends
The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in the temperature of ignition and a decrease in the burnout value. When the O2 concentration was increased to 30 and 35%, the temperature of ignition was lower and the burnout value was higher than in air conditions. A significant reduction in ignition temperature and a slight increase in the burnout value was observed after the addition of biomass, this trend becoming more noticeable as the biomass concentration was increased. The emissions of NO during oxy-fuel combustion were lower than under air-firing. However, they remained similar under all the oxy-fuel atmospheres with increasing O2 concentrations. Emissions of NO were significantly reduced by the addition of biomass to the bituminous coal, although this effect was less noticeable in the case of the semi-anthracite.This work was carried out with financial support from the Spanish MICINN (Project
PS-120000-2005-2) co-financed by the European Regional Development Fund. M.V.G.
and L.A. acknowledge funding from the CSIC JAE-Doc and CSIC JAE-Pre programs,
respectively, co-financed by the European Social Fund. J.R. acknowledges funding
from the Government of the Principado de Asturias (Severo Ochoa program).Peer reviewe
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
Decomposition algorithms for submodular optimization with applications to parallel machine scheduling with controllable processing times
In this paper we present a decomposition algorithm for maximizing a linear function over a submodular polyhedron intersected with a box. Apart from this contribution to submodular optimization, our results extend the toolkit available in deterministic machine scheduling with controllable processing times. We demonstrate how this method can be applied to developing fast algorithms for minimizing total compression cost for preemptive schedules on parallel machines with respect to given release dates and a common deadline. Obtained scheduling algorithms are faster and easier to justify than those previously known in the scheduling literature
- …
