691 research outputs found

    The influence of a single defect in composite gate insulators on the performance of nanotube transistors

    Full text link
    The current through a carbon nanotube field-effect transistor (CNFET) with cylindrical gate electrode is calculated using the nonequilibrium Greens function method in a tight-binding approximation. The obtained result is in good agreement with the experimental data. The space radiation and nuclear radiation are known to cause defects in solids. The theoretical approach is used to calculate the amplitude of the random-telegraph-signal (RTS) noise due to a single defect in the gate oxide of a long channel p-type CNFET. We investigate how the amplitude of the RTS noise is affected by the composite structure of gate insulators, which contains an inner insulator with a dielectric constant larger than 3.9 and an outer insulator with a dielectric constant of 3.9 (as for SiO2). It is found that the RTS amplitude increases apparently with the decreasing thickness of the inner gate insulator. If the inner insulator is too thin, even though its dielectric constant is as large as 80, the amplitude of the RTS noise caused by the charge of Q = +1e may amount to around 80% in the turn-on region. Due to strong effects of defects in CNFETs, CNFETs have a potential to be used for detecting the space radiation or nuclear radiation.Comment: 8 Figure

    A kilonova associated with GRB 070809

    Get PDF
    For on-axis typical short gamma-ray bursts (sGRBs), the forward shock emission is usually so bright that renders the identification of kilonovae (also known as macronovae) in the early afterglow (t<0.5t<0.5 d) phase rather challenging. This is why previously no thermal-like kilonova component has been identified at such early time except in the off-axis dim GRB 170817A associated with GW170817. Here we report the identification of an unusual optical radiation component in GRB 070809 at t0.47t\sim 0.47 d, thanks plausibly to the very-weak/subdominant forward shock emission. The optical emission with a very red spectrum is well in excess of the extrapolation of the X-ray emission that is distinguished by an unusually hard spectrum, which is at odds with the forward shock afterglow prediction but can be naturally interpreted as a kilonova. Our finding supports the speculation that kilonovae are ubiquitous , and demonstrates the possibility of revealing the neutron star merger origin with the early afterglow data of some typical sGRBs that take place well beyond the sensitive radius of the advanced gravitational wave detectors and hence the opportunity of organizing dedicated follow-up observations for events of interest.Comment: 20 pages, 5 figures, published in Nature Astronom

    GW170817/GRB 170817A/AT2017gfo association: some implications for physics and astrophysics

    Full text link
    On 17 August 2017, a gravitational wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The followup optical/infrared observations also identified the macronova/kilonova emission (AT2017gfo). In this work we discuss some implications of the remarkable GW170817/GRB 170817A/AT2017gfo association. We show that the 1.7\sim 1.7s time delay between the gravitational wave (GW) and GRB signals imposes very tight constraint on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is 4.3×1016\leq 4.3\times 10^{-16}) or the possible violation of weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of 3.4×109\sim 3.4\times 10^{-9}). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration ("Covariant Galileon") are ruled out, too. The successful identification of Lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.Comment: 8 pages, 3 figures, Accepted for Publication in ApJ

    Nonlinear energy-loss straggling of protons and antiprotons in an electron gas

    Full text link
    The electronic energy-loss straggling of protons and antiprotons moving at arbitrary nonrelativistic velocities in a homogeneous electron gas are evaluated within a quadratic response theory and the random-phase approximation (RPA). These results show that at low and intermediate velocities quadratic corrections reduce significantly the energy-loss straggling of antiprotons, these corrections being, at low-velocities, more important than in the evaluation of the stopping power.Comment: 4 pages, 3 figures, to appear in Phys. Rev.

    Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Get PDF
    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output – input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount

    Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis

    Get PDF
    X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model

    Kerker-Type Positional Disorder Immune Metasurfaces

    Full text link
    Metasurfaces that can work without the rigorous periodic arrangement of meta-atoms are highly desired by practical optical micro-nano devices. In this work, we proposed two kinds of Kerker-type metasurfaces possessing positional disorder immunity. The metasurfaces are composed of two different core-shell cylinders satisfying the first and second Kerker conditions, respectively. Even with large positional disorder perturbation of the meta-atoms, the metasurfaces can still maintain the same excellent performances as periodic ones, such as the total transmission and magnetic mirror responses. This disorder immunity is due to the unidirectional forward and backward scatterings of a single core-shell cylinder leading to very weak lateral couplings between neighboring cylinders thus rarely affecting the multiple scatterings in the forward or backward direction. In contrast, the dominant response of the disordered non-Kerker-type metasurface decreases significantly. Our findings provide a new idea for designing robust metasurfaces and extend the scope of metasurface applications in sensing and communication under complex practical circumstances.Comment: 18 pages, 9 figure

    Electronic Stopping and Momentum Density of Diamond Obtained from First-Principles Calculations

    Full text link
    We calculate the "head" element or the (0,0)-element of the wave-vector and frequency-dependent dielectric matrix of bulk crystals via first-principles, all-electron Kohn-Sham states in the integral of the irreducible polarizability in the random phase approximation. We approximate the macroscopic "head" element of the inverse matrix by its reciprocal value, and integrate over frequencies and momenta to obtain the electronic energy loss of protons at low velocities. Numerical evaluation for diamond targets predicts that the band gap causes a strong non-linear reduction of the electronic stopping power at ion velocities below 0.2 atomic units.Comment: 8 pages, 6 figures, REVTeX
    corecore