167 research outputs found
Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter
Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients
Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent
Treatment of shrimp effluent by sedimentation and oyster filtration using Crassostrea gigas and C. rhizophorae
Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds
Aquaponics: alternative types and approaches
Whilst aquaponics may be considered in the mid-stage of development, there are a number of allied, novel methods of food production that are aligning alongside aquaponics and also which can be merged with aquaponics to deliver food efficiently and productively. These technologies include algaeponics, aeroponics, aeroaquaponics, maraponics, haloponics, biofloc technology and vertical aquaponics. Although some of these systems have undergone many years of trials and research, in most cases, much more scientific research is required to understand intrinsic
processes within the systems, efficiency, design aspects, etc., apart from the capacity, capabilities and benefits of conjoining these systems with aquaponics
Ulva lactuca Biofilters for Marine Fishpond Effluents. I. Ammonia Uptake Kinetics and Nitrogen Content
Ulva reticulata and Gracilaria crassa: Macroalgae That Can Biofilter Effluent from Tidal Fishponds in Tanzania
Research Groups:
Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
The National Centre for Mariculture, Israel Oceanographic and Limnological Research, P.O. Box 1212, Eilat 88112, IsraelMacroalgae (seaweed) can be cultured effectively for the production of useful algal biomass and removal of nutrients from fishpond effluents. A land-based, tide/gravity-driven flow-through, fish-macroalgae integrated system was studied at Makoba Bay, Zanzibar, Tanzania, during May-October, 2000. Rectangular cages made of 1-inch mesh netting were constructed in channels that received the outflows of the fishponds. Four species of macroalgae were planted in the cages and compared for their usefulness as biofilters. Gracilaria crassa and Ulva reticulata grew at average rates of 1.5 and 1.2 %, respectively. Both species removed nitrogen as seaweed protein at rates of up to 0.4 g N/m2/d. The algal biomass produced was of good quality with protein dry weight contents of 13% for Gracilaria crassa and 26 % for Ulva reticulata. The biofilters also raised the pH values of the fishpond effluents and oxygenated the water. In contrast to Ulva and Gracilaria, species of Eucheuma and Chaetomorpha performed poorly in the fishpond effluents.Publishe
- …
