1,204 research outputs found
Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation
Autoimmune diseases are driven by immune cells that recognize self-tissues. A major goal for treatment strategies for autoimmune diseases is to turn off or tolerize self-reactive immune cells such as CD4 T cells that coordinate tissue damage in many autoimmune diseases. Autoimmune diseases are often diagnosed many years following their onset. The self-reactive CD4 T cells that must be tolerized, therefore, are previously activated or memory CD4 T cells. Little is known about whether tolerance can be induced in memory CD4 T cells. This paper demonstrates that memory CD4 T cells survive initial exposure to tolerance-inducing signals but that a second activation signal leads to cell death. This study has important implications for immunotherapeutic strategies for autoimmune diseases
Self-reactive human CD4 T cell clones form unusual immunological synapses
Recognition of self–peptide-MHC (pMHC) complexes by CD4 T cells plays an important role in the pathogenesis of many autoimmune diseases. We analyzed formation of immunological synapses (IS) in self-reactive T cell clones from patients with multiple sclerosis and type 1 diabetes. All self-reactive T cells contained a large number of phosphorylated T cell receptor (TCR) microclusters, indicative of active TCR signaling. However, they showed little or no visible pMHC accumulation or transport of TCR–pMHC complexes into a central supramolecular activation cluster (cSMAC). In contrast, influenza-specific T cells accumulated large quantities of pMHC complexes in microclusters and a cSMAC, even when presented with 100-fold lower pMHC densities. The self-reactive T cells also maintained a high degree of motility, again in sharp contrast to virus-specific T cells. 2D affinity measurements of three of these self-reactive T cell clones demonstrated a normal off-rate but a slow on-rate of TCR binding to pMHC. These unusual IS features may facilitate escape from negative selection by self-reactive T cells encountering very small amounts of self-antigen in the thymus. However, these same features may enable acquisition of effector functions by self-reactive T cells encountering large amounts of self-antigen in the target organ of the autoimmune disease
Involvement of Mhc Loci in immune responses that are not Ir-gene-controlled
Twenty-nine randomly chosen, soluble antigens, many of them highly complex, were used to immunize mice of two strains, C3H and B10.RIII. Lymphnode cells from the immunized mice were restimulated in vitro with the priming antigens and the proliferative response of the cells was determined. Both strains were responders to 28 of 29 antigens. Eight antigens were then used to immunize 11 congenic strains carrying different H-2 haplotypes, and the T-cell proliferative responses of these strains were determined. Again, all the strains responded to seven of the eight antigens. These experiments were then repeated, but this time -antibodies specific for the A (AA) or E (EE) molecules were added to the culture to block the in vitro responsiveness. In all but one of the responses, inhibition with both A-specific and E-specific antibodies was observed. The response to one antigen (Blastoinyces) was exceptional in that some strains were nonresponders to this antigen. Furthermore, the response in the responder strains was blocked with A-specific, but not with E-specific, antibodies. The study demonstrates that responses to antigens not controlled by Irr genes nevertheless require participation of class II Mhc molecules. In contrast to Ir gene-controlled responses involving either the A- or the E-molecule controlling loci (but never both), the responses not Ir-controlled involve participation of both A- and E-controlling loci. The lack of Ir-gene control is probably the result of complexity of the responses to multiple determinants. There is thus no principal difference between responses controlled and those not controlled by Ir genes: both types involve the recognition of the antigen, in the context of Mhc molecules
Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity
Induction of selective, autoantigen-specific tolerance is the “holy grail” for the treatment and prevention of autoimmune diseases. Despite successes in many differential murine models, rational and efficient translation to the clinic has been difficult. During the 5th Annual Federation of Clinical Immunological Societies (FOCIS) Meeting, May 12–16, 2005, in Boston, MA, a Kirin-sponsored “Ideashop” was convened to discuss this theme amongst scientists, clinicians, industry partners, and funding agencies
Geschlechterdifferenzierung in technischen Berufen unter dem Aspekt wachsender Heterogenität: Eine Untersuchung in der betrieblichen Berufsausbildung
Den Schwerpunkt dieser Arbeit bildet der Umgang des Ausbildungspersonals mit der Geschlechterdifferenzierung in der betrieblichen Ausbildung in technischen Berufen. Die Auswertungsergebnisse der qualitativen Inhaltsanalyse nach Mayring zeigten, dass das bewusste Erkennen von Geschlechterdifferenzen im engen Zusammenhang mit den langjährigen beruflichen Erfahrungen und Konfrontationen mit der Zielgruppe der weiblichen Auszubildenden steht. Die Verhaltensspezifik der männlichen Auszubildenden ist für Ausbilder/-innen bereits alltäglich geworden. Die Ausbilder der TBZ-Werkstätte (Interviewprobanden 3 und 4) nehmen Geschlechterdifferenzen wahr und gehen mit diesen bewusster um, was keine großartige lernprozessbezogene Probleme zulässt, interaktives Handeln zwischen Auszubildenden bzw. ihren Ausbildern unterstützt und die Entwicklung des technischen Verständnisses sowie Fertigkeiten gleichermaßen bei beiden Geschlechtern sichert
HLA-DR and HLA-DQ typing: a comparative study using serology and restriction fragment length polymorphism (RFLP) analysis
Embora as tipificações sorológicas dependam da expressão adequada de moléculas HLA de classe II, nas superfícies celulares, da viabilidade celular e da presença de um painel adequado de anti-soros, esse método tem sido utilizado há muitos anos e as tipificações por biologia molecular têm suplantado os problemas. A avaliação do polimorfismo dos genes HLA por intermédio da variação do tamanho dos fragmentos gerados pós digestão com enzimas de restrição (RFLP) foi o primeiro método molecular a ser utilizado para esse fim. A sorologia e o método utilizando RFLP definem os alelos HLA sem muita resolutividade, no entanto, o método utilizando RFLP tem sido considerado melhor do que a sorologia. Assim, neste estudo, fizemos análise das tipificações dos antígenos/alelos HLA de classe II (HLA-DR e HL-DQ), comparando os dois métodos.Serology has been used for HLA typing for many decades; however, serological typing of histocompatibility class II molecules depends on the adequate expression of these molecules on the surface of B lymphocytes, the availability of viable cells and a complete set of antisera. HLA typing at the genomic level has supplanted these pitfalls. The utilization of restriction fragment length polymorphism (RFLP) was the first approach to the HLA typing at molecular level. Although serology and RFLP methods define HLA specificities at low resolution level, RFLP has been considered to be better than serology. In this study, we performed HLA class II (HLA-DR and DQ) typing comparing these two methods
Targeting effector memory T cells with alefacept in new onset type 1 diabetes: 12 month results from the T1DAL study
Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D. Methods The T1DAL study is a phase II, double-blind, placebo-controlled trial that randomised T1D patients 12-35 years old within 100 days of diagnosis, 33 to alefacept (two 12-week courses of 15 mg IM per week, separated by a 12-week pause) and 16 to placebo, at 14 US sites. The primary endpoint was the change from baseline in mean 2-hour C-peptide area under the curve (AUC) at 12 months. This trial is registered with ClinicalTrials.gov, number NCT00965458. Findings The mean 2-hour C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110 nmol/L) in the alefacept group and decreased by 0.115 nmol/L (95% CI -0.278 to 0.047) in the placebo group, which was not significant (p=0.065). However, key secondary endpoints were met: the mean 4-hour C-peptide AUC was significantly higher (p=0.019), and daily insulin use and the rate of hypoglycemic events were significantly lower (p=0.02 and p<0.001, respectively) at 12 months in the alefacept vs. placebo groups. Safety and tolerability were comparable between groups. There was targeted depletion of Tems and Tcms, with sparing of naïve and regulatory T cells (Tregs). Interpretation At 12 months, alefacept preserved the 4-hour C-peptide AUC, lowered insulin use, and reduced hypoglycemic events, suggesting a signal of efficacy. Depletion of memory T cells with sparing of Tregs may be a useful strategy to preserve beta cell function in new-onset T1D
Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy
Associations of HLA DR and DQ molecules with Lyme borreliosis in Latvian patients
Copyright: Copyright 2012 Elsevier B.V., All rights reserved.Background: Many autoimmune diseases are associated with variants of HLA genes such as those encoding the MHC complex. This correlation is not absolute, but may help in understanding of the molecular mechanism of disease. The purpose of this study was to determine HLA-DR,-DQ alleles in Latvian patients with Lyme borreliosis and control (healthy) persons. Case patients and control subjects were similar in age, gender and ethnic heritage and differed only as regards the presence of Borrelia burgdorferi infection. The study included 25 patients with clinical stage - erythema migrans and 30 control (healthy) persons. HLA genotyping was performed by PCR with sequence-specific primers. Results: The results show difference in HLA-DRB1 alleles distribution between patients and control subjects. The frequencies of HLA-DRB1 *04 (OR 11.24; p<0.007) and HLA-DRB1 *17 (03) (OR 8.05; p<0.033) were increased in the Lyme disease patients. And the frequency of allele DRB1*13 (OR 0.12; p<0.017) was lower in Borreliosis patients and higher in control group. But, significant differences in frequencies of HLA-DQ alleles we did not detect. Conclusions: HLA predisposition to Lyme borreliosis appears not to be limited to HLA molecules, but some HLA-DR alleles also have a significant influence, and, may have implications in our understanding of pathogenesis of this disease. In particular, HLA-DRB1*04 and DRB1 *17 (03) may contribute to the Lyme borreliosis development in Latvian population.publishersversionPeer reviewe
Identification of a polymorphic variant associated with HLA-DQw3 and characterized by specific restriction sites within the DQ beta-chain gene.
- …
