468 research outputs found
Large Scale Clustering of Sloan Digital Sky Survey Quasars: Impact of the Baryon Density and the Cosmological Constant
We report the first result of the clustering analysis of Sloan Digital Sky
Survey (SDSS) quasars. We compute the two-point correlation function (2PCF) of
SDSS quasars in redshift space at ,
with particular attention to its baryonic signature. Our sample consists of
19986 quasars extracted from the SDSS Data Release 4 (DR4). The redshift range
of the sample is (the mean redshift is )
and the reddening-corrected -band apparent magnitude range is . Due to the relatively low number density of the
quasar sample, the bump in the power spectrum due to the baryon density,
, is not clearly visible. The effect of the baryon density is,
however, to distort the overall shape of the 2PCF.The degree of distortion
makes it an interesting alternate measure of the baryonic signature. Assuming a
scale-independent linear bias and the spatially flat universe, i.e.,
, where
and denote the density parameters of dark matter and the
cosmological constant, we combine the observed quasar 2PCF and the predicted
matter 2PCF to put constraints on and . Our
result is fitted as at the 2 confidence level, which is consistent with
results from other cosmological observations such as WMAP. (abridged)Comment: 26 pages, 12 figures, Accepted for publication in the PAS
Photometric Redshifts of Quasars
We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter
system and the quality of the SDSS imaging data are sufficient for determining
accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a
sample of 2625 quasars, we show that photo-z determination is even possible for
z<=2.2 despite the lack of a strong continuum break that robust photo-z
techniques normally require. We find that, using our empirical method on our
sample of objects known to be quasars, approximately 70% of the photometric
redshifts are correct to within delta z = 0.2; the fraction of correct
photometric redshifts is even better for z>3. The accuracy of quasar
photometric redshifts does not appear to be dependent upon magnitude to nearly
21st magnitude in i'. Careful calibration of the color-redshift relation to
21st magnitude may allow for the discovery of on the order of 10^6 quasars
candidates in addition to the 10^5 quasars that the SDSS will confirm
spectroscopically. We discuss the efficient selection of quasar candidates from
imaging data for use with the photometric redshift technique and the potential
scientific uses of a large sample of quasar candidates with photometric
redshifts.Comment: 29 pages, 8 figures, submitted to A
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
We present measurements of parameters of the 3-dimensional power spectrum of
galaxy clustering from 222 square degrees of early imaging data in the Sloan
Digital Sky Survey. The projected galaxy distribution on the sky is expanded
over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise
ratio in our analysis. A maximum likelihood analysis is used to estimate
parameters that set the shape and amplitude of the 3-dimensional power
spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/-
0.06 (statistical errors only), for a flat Universe with a cosmological
constant. We demonstrate that our measurements contain signal from scales at or
beyond the peak of the 3D power spectrum. We discuss how the results scale with
systematic uncertainties, like the radial selection function. We find that the
central values satisfy the analytically estimated scaling relation. We have
also explored the effects of evolutionary corrections, various truncations of
the KL basis, seeing, sample size and limiting magnitude. We find that the
impact of most of these uncertainties stay within the 2-sigma uncertainties of
our fiducial result.Comment: Fig 1 postscript problem correcte
The Sloan Digital Sky Survey Quasar Catalog IV. Fifth Data Release
We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog. The catalog contains 77,429 objects; this is an increase of over
30,000 entries since the previous edition. The catalog consists of the objects
in the SDSS Fifth Data Release that have luminosities larger than M_i = -22.0
(in a cosmology with H_0 = 70 km/s/Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7)
have at least one emission line with FWHM larger than 1000 km/s, or have
interesting/complex absorption features, are fainter than i=15.0, and have
highly reliable redshifts. The area covered by the catalog is 5740 sq. deg. The
quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the
catalog includes 891 quasars at redshifts greater than four, of which 36 are at
redshifts greater than five. Approximately half of the catalog quasars have i <
19; nearly all have i < 21. For each object the catalog presents positions
accurate to better than 0.2 arcsec. rms per coordinate, five-band (ugriz)
CCD-based photometry with typical accuracy of 0.03 mag, and information on the
morphology and selection method. The catalog also contains basic radio,
near-infrared, and X-ray emission properties of the quasars, when available,
from other large-area surveys. The calibrated digital spectra cover the
wavelength region 3800--9200A at a spectral resolution of ~2000. The spectra
can be retrieved from the public database using the information provided in the
catalog. The average SDSS colors of quasars as a function of redshift, derived
from the catalog entries, are presented in tabular form. Approximately 96% of
the objects in the catalog were discovered by the SDSS.Comment: 37 pages, Accepted for publication in A
Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey
We report the discovery of five quasars with redshifts of 4.67 - 5.27 and
z'-band magnitudes of 19.5-20.7 M_B ~ -27. All were originally selected as
distant quasar candidates in optical/near-infrared photometry from the Sloan
Digital Sky Survey (SDSS), and most were confirmed as probable high-redshift
quasars by supplementing the SDSS data with J and K measurements. The quasars
possess strong, broad Lyman-alpha emission lines, with the characteristic sharp
cutoff on the blue side produced by Lyman-alpha forest absorption. Three
quasars contain strong, broad absorption features, and one of them exhibits
very strong N V emission. The amount of absorption produced by the Lyman-alpha
forest increases toward higher redshift, and that in the z=5.27 object (D_A ~
0.7) is consistent with a smooth extrapolation of the absorption seen in lower
redshift quasars. The high luminosity of these objects relative to most other
known objects at z >~ 5 makes them potentially valuable as probes of early
quasar properties and of the intervening intergalactic medium.Comment: 13 pages in LaTex format, two postscirpt figures. Submitted to the
Astronomical Journa
The Angular Correlation Function of Galaxies from Early SDSS Data
The Sloan Digital Sky Survey is one of the first multicolor photometric and
spectroscopic surveys designed to measure the statistical properties of
galaxies within the local Universe. In this Letter we present some of the
initial results on the angular 2-point correlation function measured from the
early SDSS galaxy data. The form of the correlation function, over the
magnitude interval 18<r*<22, is shown to be consistent with results from
existing wide-field, photographic-based surveys and narrower CCD galaxy
surveys. On scales between 1 arcminute and 1 degree the correlation function is
well described by a power-law with an exponent of ~ -0.7. The amplitude of the
correlation function, within this angular interval, decreases with fainter
magnitudes in good agreement with analyses from existing galaxy surveys. There
is a characteristic break in the correlation function on scales of
approximately 1-2 degrees. On small scales, < 1', the SDSS correlation function
does not appear to be consistent with the power-law form fitted to the 1'<
theta <0.5 deg data. With a data set that is less than 2% of the full SDSS
survey area, we have obtained high precision measurements of the power-law
angular correlation function on angular scales 1' < theta < 1 deg, which are
robust to systematic uncertainties. Because of the limited area and the highly
correlated nature of the error covariance matrix, these initial results do not
yet provide a definitive characterization of departures from the power-law form
at smaller and larger angles. In the near future, however, the area of the SDSS
imaging survey will be sufficient to allow detailed analysis of the small and
large scale regimes, measurements of higher-order correlations, and studies of
angular clustering as a function of redshift and galaxy type
Evidence for Reionization at z ~ 6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar
We present moderate resolution Keck spectroscopy of quasars at z=5.82, 5.99
and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the
Ly Alpha absorption in the spectra of these quasars evolves strongly with
redshift. To z~5.7, the Ly Alpha absorption evolves as expected from an
extrapolation from lower redshifts. However, in the highest redshift object,
SDSSp J103027.10+052455.0 (z=6.28), the average transmitted flux is
0.0038+-0.0026 times that of the continuum level over 8450 A < lambda < 8710 A
(5.95<z(abs)<6.16), consistent with zero flux. Thus the flux level drops by a
factor of >150, and is consistent with zero flux in the Ly Alpha forest region
immediately blueward of the Ly Alpha emission line, compared with a drop by a
factor of ~10 at z(abs)~5.3. A similar break is seen at Ly Beta; because of the
decreased oscillator strength of this transition, this allows us to put a
considerably stronger limit, tau(eff) > 20, on the optical depth to Ly Alpha
absorption at z=6.
This is a clear detection of a complete Gunn-Peterson trough, caused by
neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen
fraction in the intergalactic medium would result in an undetectable flux in
the Ly Alpha forest region. Therefore, the existence of the Gunn-Peterson
trough by itself does not indicate that the quasar is observed prior to the
reionization epoch. However, the fast evolution of the mean absorption in these
high-redshift quasars suggests that the mean ionizing background along the line
of sight to this quasar has declined significantly from z~5 to 6, and the
universe is approaching the reionization epoch at z~6.Comment: Revised version (2001 Sep 4) accepted by the Astronomical Journal
(minor changes
Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System
We present an empirical investigation of the colors of quasars in the Sloan
Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625
quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide
stripe centered on the Celestial Equator covering square degrees.
Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS
spectroscopic commissioning. New SDSS quasars represent an increase of over
200% in the number of known quasars in this area of the sky. The ensemble
average of the observed colors of quasars in the SDSS passbands are well
represented by a power-law continuum with (). However, the contributions of the bump
and other strong emission lines have a significant effect upon the colors. The
color-redshift relation exhibits considerable structure, which may be of use in
determining photometric redshifts for quasars. The range of colors can be
accounted for by a range in the optical spectral index with a distribution
(95% confidence), but there is a red tail in the
distribution. This tail may be a sign of internal reddening. Finally, we show
that there is a continuum of properties between quasars and Seyfert galaxies
and we test the validity of the traditional division between the two classes of
AGN.Comment: 66 pages, 15 figures (3 color), accepted by A
- …
