1,241 research outputs found

    Equidistant Codes in the Grassmannian

    Full text link
    Equidistant codes over vector spaces are considered. For kk-dimensional subspaces over a large vector space the largest code is always a sunflower. We present several simple constructions for such codes which might produce the largest non-sunflower codes. A novel construction, based on the Pl\"{u}cker embedding, for 1-intersecting codes of kk-dimensional subspaces over \F_q^n, n(k+12)n \geq \binom{k+1}{2}, where the code size is qk+11q1\frac{q^{k+1}-1}{q-1} is presented. Finally, we present a related construction which generates equidistant constant rank codes with matrices of size n×(n2)n \times \binom{n}{2} over \F_q, rank n1n-1, and rank distance n1n-1.Comment: 16 page

    Distributed Storage Systems based on Equidistant Subspace Codes

    Full text link
    Distributed storage systems based on equidistant constant dimension codes are presented. These equidistant codes are based on the Pl\"{u}cker embedding, which is essential in the repair and the reconstruction algorithms. These systems posses several useful properties such as high failure resilience, minimum bandwidth, low storage, simple algebraic repair and reconstruction algorithms, good locality, and compatibility with small fields

    Disorder induced transitions in resonantly driven Floquet Topological Insulators

    Get PDF
    We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a mobility gap at the resonant quasi-energy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). We identify the conditions on the driving field necessary for observing such a transition.Comment: 18 pages, 13 figure
    corecore