1,624 research outputs found

    Electric Field Effects on Graphene Materials

    Full text link
    Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2_2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε\varepsilon) of few-layer graphene and MoS2_2 is tunable by external electric fields (EextE_{\rm ext}). We show that at low fields (Eext<0.01E_{\rm ext}^{}<0.01 V/\AA) ε\varepsilon assumes a nearly constant value \sim4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε\varepsilon with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε\varepsilon on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter: Advances in Physics and Chemistry, Springer Series on Carbon Materials. Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    The Effects of Dasatinib in Experimental Acute Respiratory Distress Syndrome Depend on Dose and Etiology

    Get PDF
    Background/Aims: Evidence suggests that tyrosine-kinase inhibitors may attenuate lung inflammation and fibrosis in experimental acute respiratory distress syndrome (ARDS). We hypothesized that dasatinib, a tyrosine-kinase inhibitor, might act differently depending on the ARDS etiology and the dose. Methods: C57/BL6 mice were divided to be pre-treated with dasatinib (1mg/kg or 10mg/kg) or vehicle (1% dimethyl-sulfoxide) by oral gavage. Thirty-minutes after pre-treatment, mice were subdivided into control (C) or ARDS groups. ARDS animals received Escherichia coli lipopolysaccharide intratracheally (ARDSp) or intraperitoneally (ARDSexp). A new dose of dasatinib or vehicle was administered at 6 and 24h. Results: Forty-eight hours after ARDS induction, dasatinib 1mg/kg yielded: improved lung morphofunction and reduced cells expressing toll-like receptor (TLR)-4 in lung, independent of ARDS etiology; reduced neutrophil and levels of interleukin (IL)-6, IL-10 and transforming growth factor (TGF)-β in ARDSp. The higher dose of dasatinib caused no changes in lung mechanics, diffuse alveolar damage, neutrophil, or cells expressing TLR4, but increased IL-6, vascular endothelial growth factor (VEGF), and cells expressing Fas receptor in lung in ARDSp. In ARDSexp, it improved lung morphofunction, increased VEGF, and reduced cells expressing TLR4. Conclusion: Dasatinib may have therapeutic potential in ARDS independent of etiology, but careful dose monitoring is required. © 2015 S. Karger AG, Basel

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential

    Full text link
    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non- Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and ex- plore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase tran- sition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops

    T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    Get PDF
    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al

    The effect of polymer/plasticiser ratio in film forming solutions on the properties of chitosan films

    Get PDF
    In this work physical-chemical properties of chitosan/ glycerol film forming solutions (FFS) and the resulting films were analysed. Solutions were prepared using different concentrations of plasticising agent (glycerol) and chitosan. Films were produced by solvent casting and equilibrated in a controlled atmosphere. FFS water activity and rheological behaviour were determined. Films water content, solubility, water vapour and oxygen permeabilities, thickness, and mechanical and thermal properties were determined. Fourier transform infrared (FTIR) spectroscopy was also used to study the chitosan/glycerol interactions. Results demonstrate that FFS chitosan concentration influenced solutions consistency coefficient and this was related with differences in films water retention and structure. Plasticiser addition led to an increase in films moisture content, solubility and water vapour permeability, water affinity and structural changes. Films thermo-mechanical properties are significantly affected by both chitosan and glycerol addition. FTIR experiments confirm these results. This work highlights the importance of glycerol and water plasticisation in films properties.This work was supported by National Funds from FCT - Fundacao para a Ciencia e a Tecnologia, through project PEst-OE/EQB/LA0016/2011.Authors Joana F. Fundo, Andrea C. Galvis-Sanchez and Mafalda A. C. Quintas acknowledge FCT for research grants SFRH/ BD / 62176 / 2009, SFRH/BPD/37890/2007 and SFRH / BPD / 41715 / 2007, respectively

    Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers

    Get PDF
    Cowpea (Vigna unguiculata L. Walp) is an important legume crop due to its high protein content, adaptation to heat and drought and capacity to fix nitrogen. Europe has a deficit of cowpea production. Knowledge of genetic diversity among cowpea landraces is important for the preservation of local varieties and is the basis to obtain improved varieties. The aims of this study were to explore diversity and the genetic structure of a set of Iberian Peninsula cowpea accessions in comparison to a worldwide collection and to infer possible dispersion routes of cultivated cowpea.This study was supported by EUROLEGUME project. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613781. European Investment Funds by FEDER/COMPETE/ POCI – Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT – Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. MMA was partially supported by the Feed the Future Innovation Lab for Climate Resilient Cowpea (USAID Cooperative Agreement AID-OAA-A-13-00070), which is directed by TJC. The funding entities had no role in the design of the study, collection, analysis and interpretation of data, or in writing the manuscript.info:eu-repo/semantics/publishedVersio
    corecore