1,472 research outputs found
Dilaton Quantum Cosmology with a Schrodinger-like equation
A quantum cosmological model with radiation and a dilaton scalar field is
analysed. The Wheeler-deWitt equation in the mini-superspace induces a
Schr\"odinger equation, which can be solved. An explicit wavepacket is
constructed for a particular choice of the ordering factor. A consistent
solution is possible only when the scalar field is a phantom field. Moreover,
although the wavepacket is time dependent, a Bohmian analysis allows to extract
a bouncing behaviour for the scale factor.Comment: 14 pages, 3 figures in eps format. Minors corrections, new figure
Gate-tuned normal and superconducting transport at the surface of a topological insulator
Three-dimensional topological insulators are characterized by the presence of
a bandgap in their bulk and gapless Dirac fermions at their surfaces. New
physical phenomena originating from the presence of the Dirac fermions are
predicted to occur, and to be experimentally accessible via transport
measurements in suitably designed electronic devices. Here we study transport
through superconducting junctions fabricated on thin Bi2Se3 single crystals,
equipped with a gate electrode. In the presence of perpendicular magnetic field
B, sweeping the gate voltage enables us to observe the filling of the Dirac
fermion Landau levels, whose character evolves continuously from electron- to
hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned,
and is minimum at the charge neutrality point determined from the Landau level
filling. Our results demonstrate how gated nano-electronic devices give control
over normal and superconducting transport of Dirac fermions at an individual
surface of a three-dimensional topological insulator.Comment: 28 pages, 5 figure
Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
A spin liquid is a novel quantum state of matter with no conventional order
parameter where a finite charge gap exists even though the band theory would
predict metallic behavior. Finding a stable spin liquid in two or higher
spatial dimensions is one of the most challenging and debated issues in
condensed matter physics. Very recently, it has been reported that a model of
graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin
liquid ground state in a wide region of the phase diagram, between a semi-metal
(SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically
exact quantum Monte Carlo simulations, we extend the previous study to much
larger clusters (containing up to 2592 sites), and find, if any, a very weak
evidence of this spin liquid region. Instead, our calculations strongly
indicate a direct and continuous quantum phase transition between SM and AFMI.Comment: 15 pages with 7 figures and 9 tables including supplementary
information, accepted for publication in Scientific Report
Criticality in correlated quantum matter
At quantum critical points (QCP)
\cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1
994,Coleman:2005} there are quantum fluctuations on all length scales, from
microscopic to macroscopic lengths, which, remarkably, can be observed at
finite temperatures, the regime to which all experiments are necessarily
confined. A fundamental question is how high in temperature can the effects of
quantum criticality persist? That is, can physical observables be described in
terms of universal scaling functions originating from the QCPs? Here we answer
these questions by examining exact solutions of models of correlated systems
and find that the temperature can be surprisingly high. As a powerful
illustration of quantum criticality, we predict that the zero temperature
superfluid density, , and the transition temperature, , of
the cuprates are related by , where the exponent
is different at the two edges of the superconducting dome, signifying the
respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction
Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene
We study the realization in a model of graphene of the phenomenon whereby the
tendency of gauge-field mediated interactions to break chiral symmetry
spontaneously is greatly enhanced in an external magnetic field. We prove that,
in the weak coupling limit, and where the electron-electron interaction
satisfies certain mild conditions, the ground state of charge neutral graphene
in an external magnetic field is a quantum Hall ferromagnet which spontaneously
breaks the emergent U(4) symmetry to U(2)XU(2).
We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet
order parameter is given exactly by the leading order in perturbation theory.
On the other hand, the chiral condensate which is the order parameter for
chiral symmetry breaking generically obtains contributions at all orders. We
compute the leading correction to the chiral condensate. We argue that the
ensuing fermion spectrum resembles that of massive fermions with a vanishing
U(4)-valued chemical potential. We discuss the realization of parity and charge
conjugation symmetries and argue that, in the context of our model, the charge
neutral quantum Hall state in graphene is a bulk insulator, with vanishing
longitudinal conductivity due to a charge gap and Hall conductivity vanishing
due to a residual discrete particle-hole symmetry.Comment: 35 page
Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant
In this work we carry out a noncommutative analysis of several
Friedmann-Robert-Walker models, coupled to different types of perfect fluids
and in the presence of a cosmological constant. The classical field equations
are modified, by the introduction of a shift operator, in order to introduce
noncommutativity in these models. We notice that the noncommutative versions of
these models show several relevant differences with respect to the
correspondent commutative ones.Comment: 27 pages. 7 figures. JHEP style.arXiv admin note: substantial text
overlap with arXiv:1104.481
Assessement of tensile strength of graphites by the iosipescu coupon test
Polycrystalline graphites are widely used in the metallurgical, nuclear and aerospace industries. Graphites are particulated composites manufactured with a mixture of coke with pitch, and changes in relative proportions of these materials cause modifications in their mechanical properties. Uniaxial tension tests must be avoided for mechanical characterization in this kind of brittle material, due to difficulties in making the relatively long specimens and premature damages caused during testing set-up. On other types of tests, e.g. bending tests, the specimens are submitted to combined stress states (normal and transverse shear stresses). The Iosipescu shear test, is performed in a beam with two 90° opposite notches machined at the mid-length of the specimens, by applying two forces couples, so that a pure and uniform shear stress state is generated at the cross section between the two notches. When a material is isotropic and brittle, a failure at 45° in relation to the beam long axis can take place, i.e., the tensile normal stress acts parallel to the lateral surface of the notches, controls the failure and the result of the shear test is numerically equivalent to the tensile strength. This work has evaluated a graphite of the type used in rocket nozzles by the Iosipescu test and the resulted stress, ~11 MPa, was found to be equal to the tensile strength. Thus, the tensile strength can be evaluated just by a single and simple experiment, thus avoiding complicated machining of specimen and testing set-up
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
- …
