1,143 research outputs found

    Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy Formation

    Get PDF
    Supernova-driven outflows from early galaxies may have had a large impact on the kinetic and chemical structure of the intergalactic medium (IGM). We use three-dimensional Monte Carlo cosmological realizations of a simple linear peaks model to track the time evolution of such metal-enriched outflows and their feedback on galaxy formation. We find that at most 30% of the IGM by volume is enriched to values above 10^-3 solar in models that only include objects that cool by atomic transitions. The majority of enrichment occurs relatively early (5 < z < 12) and resulting in a mass-averaged cosmological metallicity between 10^-3 and 10^-1.5 solar. The inclusion of Population III objects that cool through H2 line emission has only a minor impact on these results: increasing the mean metallicity and filling factor by at most a factor of 1.4, and moving the dawn of the enrichment epoch to a redshift of approximately 14 at the earliest. Thus enrichment by outflowing galaxies is likely to have been incomplete and inhomogeneous, biased to the areas near the starbursting galaxies themselves. Models with a 10% star formation efficiency can satisfactorily reproduce the nearly constant (2 < z < 5, Z approximately 3.5 x 10^-4 solar) metallicity of the low column density Ly-alpha forest derived by Songaila (2001), an effect of the decreasing efficiency of metal loss from larger galaxies. Finally, we show that IGM enrichment is intimately tied to the ram-pressure stripping of baryons from neighboring perturbations. This results in the suppression of at least 20% of the dwarf galaxies in the mass range 10^8.5 to 10^9.5 solar, in all models with filling factors greater than 2%, and an overall suppression of approximately 50% of dwarf galaxies in the most observationally-favored model.Comment: 8 pages, 5 figures, accepted to Ap

    The cosmological constant and the paradigm of adiabaticity

    Full text link
    We discuss the value of the cosmological constant as recovered from CMB and LSS data and the robustness of the results when general isocurvature initial conditions are allowed for, as opposed to purely adiabatic perturbations. The Bayesian and frequentist statistical approaches are compared. It is shown that pre-WMAP CMB and LSS data tend to be incompatible with a non-zero cosmological constant, regardless of the type of initial conditions and of the statistical approach. The non-adiabatic contribution is constrained to be < 40% (2sigma c.l.).Comment: 9 pages, 5 figures, to appear in New Astronomy Reviews, Proceedings of the 2nd CMBNET Meeting, 20-21 February 2003, Oxford, U

    The Anisotropy in the Cosmic Microwave Background At Degree Angular Scales

    Full text link
    We detect anisotropy in the cosmic microwave background (CMB) at degree angular scales and confirm a previous detection reported by Wollack et al. (1993). The root-mean-squared amplitude of the fluctuations is 447+13μ44^{+13}_{-7} \muK. This may be expressed as the square root of the angular power spectrum in a band of multipoles between leff=6922+29l_{eff}=69^{+29}_{-22}. We find δTl=l(2l+1)/4π=427+12μ\delta T_l = \sqrt{l(2l+1)/4\pi} = 42^{+12}_{-7} \muK. The measured spectral index of the fluctuations is consistent with zero, the value expected for the CMB. The spectral index corresponding to Galactic free-free emission, the most likely foreground contaminant, is rejected at approximately 3σ3\sigma. The analysis is based on three independent data sets. The first, taken in 1993, spans the 26 - 36 GHz frequency range with three frequency bands; the second was taken with the same radiometer as the first but during an independent observing campaign in 1994; and the third, also take in 1994, spans the 36-46 GHz range in three bands. For each telescope position and radiometer channel, the drifts in the instrument offset are 4 μ\le 4~\muK/day over a period of one month. The dependence of the inferred anisotropy on the calibration and data editing is addressed.Comment: 16 pages, 2 figures. Saskatoon 1993/1994 combined analysi

    Primordial Nucleosynthesis in the New Cosmology

    Get PDF
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies independently predict the universal baryon density. Comparing their predictions will provide a fundamental test on cosmology. Using BBN and the CMB together, we will be able to constrain particle physics, and predict the primordial, light element abundances. These future analyses hinge on new experimental and observational data. New experimental data on nuclear cross sections will help reduce theoretical uncertainties in BBN's predictions. New observations of light element abundances will further sharpen BBN's probe of the baryon density. Observations from the MAP and PLANCK satellites will measure the fluctuations in the CMB to unprecedented accuracy, allowing the precise determination of the baryon density. When combined, this data will present us with the opportunity to perform precision cosmology.Comment: 3 pages, 1 figure, for Nuclei in the Cosmos VII proceedings to appear in Nuclear Physics

    Mapping the CMB I: the first flight of the QMAP experiment

    Full text link
    We report on the first flight of the balloon-borne QMAP experiment. The experiment is designed to make a map of the cosmic microwave background anisotropy on angular scales from 0.7 to several degrees. Using the map we determine the angular power spectrum of the anisotropy in multipole bands from l~40 to l~140. The results are consistent with the Saskatoon (SK) measurements. The frequency spectral index (measured at low l) is consistent with that of CMB and inconsistent with either Galactic synchrotron or free-free emission. The instrument, measurement, analysis of the angular power spectrum, and possible systematic errors are discussed.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions and color figures are available at http://pupgg.princeton.edu/~cmb/welcome.htm

    Cosmological constraints in Lambda-CDM and Quintessence paradigms with Archeops

    Full text link
    We review the cosmological constraints put by the current CMB experiment including the recent ARCHEOPS data, in the framework of Lambda-CDM and quintessence paradigm. We show that well chosen combinations of constraints from different cosmological observations lead to precise measurements of cosmological parameters. The Universe seems flat with a 70 percents contribution of dark energy with an equation of state very close to those of the vacuum.Comment: to appear in New Astronomy Reviews, Proceedings of the CMBNET Meeting, 20-21 February 2003, Oxford, U

    An Imaging Fabry-Perot System for the Robert Stobie Spectrograph on the Southern African Large Telescope

    Full text link
    We present the design of the Fabry-Perot system of the Robert Stobie Spectrograph on the 10-meter class Southern African Large Telescope and its characterization as measured in the laboratory. This system provides spectroscopic imaging at any desired wavelength spanning a bandpass 430 - 860 nm, at four different spectral resolving powers ranging from 300 to 9000. Our laboratory tests revealed a wavelength dependence of the etalon gap and parallelism with a maximum variation between 600 - 720 nm that arises because of the complex structure of the broadband multi-layer dielectric coatings. We also report an unanticipated optical effect of this multi-layer coating structure that produces a significant, and wavelength dependent, change in the apparent shape of the etalon plates. This change is caused by two effects: the physical non-uniformities or thickness variations in the coating layers, and the wavelength dependence of the phase change upon refection that can amplify these non-uniformities. We discuss the impact of these coating effects on the resolving power, finesse, and throughput of the system. This Fabry-Perot system will provide a powerful tool for imaging spectroscopy on one of the world's largest telescopes.Comment: 17 pages, 14 figures, accepted for publication in The Astronomical Journa

    Modified Chaplygin Gas and Constraints on its B parameter from CDM and UDME Cosmological models

    Full text link
    We study Modified Chaplygin Gas (MCG) as a candidate for dark energy and predict the values of parameters of the gas for a physically viable cosmological model. The equation of state of MCG (p=BρAραp=B \rho - \frac {A}{\rho^\alpha} ) involves three parameters: BB, AA and α\alpha. The permitted values of these parameters are determined with the help of dimensionless age parameter (HotoH_{o}t_{o}) and H(z)zH(z)-z Data. Specifically we study the allowed ranges of values of B parameter in terms of α\alpha and AsA_{s} (AsA_{s} is defined in terms of the constants in the theory). We explore the constraints of the parameters in Cold Dark Matter(CDM) model and UDME(Unified Dark Matter Energy) model respectively.Comment: 5 pages, 10 fig
    corecore