1,143 research outputs found
Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy Formation
Supernova-driven outflows from early galaxies may have had a large impact on
the kinetic and chemical structure of the intergalactic medium (IGM). We use
three-dimensional Monte Carlo cosmological realizations of a simple linear
peaks model to track the time evolution of such metal-enriched outflows and
their feedback on galaxy formation. We find that at most 30% of the IGM by
volume is enriched to values above 10^-3 solar in models that only include
objects that cool by atomic transitions. The majority of enrichment occurs
relatively early (5 < z < 12) and resulting in a mass-averaged cosmological
metallicity between 10^-3 and 10^-1.5 solar. The inclusion of Population III
objects that cool through H2 line emission has only a minor impact on these
results: increasing the mean metallicity and filling factor by at most a factor
of 1.4, and moving the dawn of the enrichment epoch to a redshift of
approximately 14 at the earliest. Thus enrichment by outflowing galaxies is
likely to have been incomplete and inhomogeneous, biased to the areas near the
starbursting galaxies themselves. Models with a 10% star formation efficiency
can satisfactorily reproduce the nearly constant (2 < z < 5, Z approximately
3.5 x 10^-4 solar) metallicity of the low column density Ly-alpha forest
derived by Songaila (2001), an effect of the decreasing efficiency of metal
loss from larger galaxies. Finally, we show that IGM enrichment is intimately
tied to the ram-pressure stripping of baryons from neighboring perturbations.
This results in the suppression of at least 20% of the dwarf galaxies in the
mass range 10^8.5 to 10^9.5 solar, in all models with filling factors greater
than 2%, and an overall suppression of approximately 50% of dwarf galaxies in
the most observationally-favored model.Comment: 8 pages, 5 figures, accepted to Ap
The cosmological constant and the paradigm of adiabaticity
We discuss the value of the cosmological constant as recovered from CMB and
LSS data and the robustness of the results when general isocurvature initial
conditions are allowed for, as opposed to purely adiabatic perturbations. The
Bayesian and frequentist statistical approaches are compared. It is shown that
pre-WMAP CMB and LSS data tend to be incompatible with a non-zero cosmological
constant, regardless of the type of initial conditions and of the statistical
approach. The non-adiabatic contribution is constrained to be < 40% (2sigma
c.l.).Comment: 9 pages, 5 figures, to appear in New Astronomy Reviews, Proceedings
of the 2nd CMBNET Meeting, 20-21 February 2003, Oxford, U
The Anisotropy in the Cosmic Microwave Background At Degree Angular Scales
We detect anisotropy in the cosmic microwave background (CMB) at degree
angular scales and confirm a previous detection reported by Wollack et al.
(1993). The root-mean-squared amplitude of the fluctuations is K. This may be expressed as the square root of the angular power spectrum
in a band of multipoles between . We find K. The measured spectral
index of the fluctuations is consistent with zero, the value expected for the
CMB. The spectral index corresponding to Galactic free-free emission, the most
likely foreground contaminant, is rejected at approximately .
The analysis is based on three independent data sets. The first, taken in
1993, spans the 26 - 36 GHz frequency range with three frequency bands; the
second was taken with the same radiometer as the first but during an
independent observing campaign in 1994; and the third, also take in 1994, spans
the 36-46 GHz range in three bands. For each telescope position and radiometer
channel, the drifts in the instrument offset are K/day over a period
of one month. The dependence of the inferred anisotropy on the calibration and
data editing is addressed.Comment: 16 pages, 2 figures. Saskatoon 1993/1994 combined analysi
Primordial Nucleosynthesis in the New Cosmology
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB)
anisotropies independently predict the universal baryon density. Comparing
their predictions will provide a fundamental test on cosmology. Using BBN and
the CMB together, we will be able to constrain particle physics, and predict
the primordial, light element abundances. These future analyses hinge on new
experimental and observational data. New experimental data on nuclear cross
sections will help reduce theoretical uncertainties in BBN's predictions. New
observations of light element abundances will further sharpen BBN's probe of
the baryon density. Observations from the MAP and PLANCK satellites will
measure the fluctuations in the CMB to unprecedented accuracy, allowing the
precise determination of the baryon density. When combined, this data will
present us with the opportunity to perform precision cosmology.Comment: 3 pages, 1 figure, for Nuclei in the Cosmos VII proceedings to appear
in Nuclear Physics
Mapping the CMB I: the first flight of the QMAP experiment
We report on the first flight of the balloon-borne QMAP experiment. The
experiment is designed to make a map of the cosmic microwave background
anisotropy on angular scales from 0.7 to several degrees. Using the map we
determine the angular power spectrum of the anisotropy in multipole bands from
l~40 to l~140. The results are consistent with the Saskatoon (SK) measurements.
The frequency spectral index (measured at low l) is consistent with that of CMB
and inconsistent with either Galactic synchrotron or free-free emission. The
instrument, measurement, analysis of the angular power spectrum, and possible
systematic errors are discussed.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions
and color figures are available at
http://pupgg.princeton.edu/~cmb/welcome.htm
Cosmological constraints in Lambda-CDM and Quintessence paradigms with Archeops
We review the cosmological constraints put by the current CMB experiment
including the recent ARCHEOPS data, in the framework of Lambda-CDM and
quintessence paradigm. We show that well chosen combinations of constraints
from different cosmological observations lead to precise measurements of
cosmological parameters. The Universe seems flat with a 70 percents
contribution of dark energy with an equation of state very close to those of
the vacuum.Comment: to appear in New Astronomy Reviews, Proceedings of the CMBNET
Meeting, 20-21 February 2003, Oxford, U
An Imaging Fabry-Perot System for the Robert Stobie Spectrograph on the Southern African Large Telescope
We present the design of the Fabry-Perot system of the Robert Stobie
Spectrograph on the 10-meter class Southern African Large Telescope and its
characterization as measured in the laboratory. This system provides
spectroscopic imaging at any desired wavelength spanning a bandpass 430 - 860
nm, at four different spectral resolving powers ranging from 300 to 9000. Our
laboratory tests revealed a wavelength dependence of the etalon gap and
parallelism with a maximum variation between 600 - 720 nm that arises because
of the complex structure of the broadband multi-layer dielectric coatings. We
also report an unanticipated optical effect of this multi-layer coating
structure that produces a significant, and wavelength dependent, change in the
apparent shape of the etalon plates. This change is caused by two effects: the
physical non-uniformities or thickness variations in the coating layers, and
the wavelength dependence of the phase change upon refection that can amplify
these non-uniformities. We discuss the impact of these coating effects on the
resolving power, finesse, and throughput of the system. This Fabry-Perot system
will provide a powerful tool for imaging spectroscopy on one of the world's
largest telescopes.Comment: 17 pages, 14 figures, accepted for publication in The Astronomical
Journa
Modified Chaplygin Gas and Constraints on its B parameter from CDM and UDME Cosmological models
We study Modified Chaplygin Gas (MCG) as a candidate for dark energy and
predict the values of parameters of the gas for a physically viable
cosmological model. The equation of state of MCG () involves three parameters: , and . The
permitted values of these parameters are determined with the help of
dimensionless age parameter () and Data. Specifically we
study the allowed ranges of values of B parameter in terms of and
( is defined in terms of the constants in the theory). We
explore the constraints of the parameters in Cold Dark Matter(CDM) model and
UDME(Unified Dark Matter Energy) model respectively.Comment: 5 pages, 10 fig
- …
