44 research outputs found
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
Does Applicability Domain Exist in Microarray-Based Genomic Research?
Constructing an accurate predictive model for clinical decision-making on the basis of a relatively small number of tumor samples with high-dimensional microarray data remains a very challenging problem. The validity of such models has been seriously questioned due to their failure in clinical validation using independent samples. Besides the statistical issues such as selection bias, some studies further implied the probable reason was improper sample selection that did not resemble the genomic space defined by the training population. Assuming that predictions would be more reliable for interpolation than extrapolation, we set to investigate the impact of applicability domain (AD) on model performance in microarray-based genomic research by evaluating and comparing model performance for samples with different extrapolation degrees. We found that the issue of applicability domain may not exist in microarray-based genomic research for clinical applications. Therefore, it is not practicable to improve model validity based on applicability domain
AMBIT RESTful web services: an implementation of the OpenTox application programming interface
The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations
