1,031 research outputs found
Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaVS
GaVS is a multiferroic semiconductor hosting N{\'e}el-type magnetic
skyrmions dressed with electric polarization. At T = 42K, the compound
undergoes a structural phase transition of weakly first-order, from a
non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral
structure at low temperatures. Below T, ferroelectric domains are formed
with the electric polarization pointing along any of the four axes. Although in this material the size and the shape of the
ferroelectric-ferroelastic domains may act as important limiting factors in the
formation of the N{\'e}el-type skyrmion lattice emerging below T=13\:K, the
characteristics of polar domains in GaVS have not been studied yet.
Here, we report on the inspection of the local-scale ferroelectric domain
distribution in rhombohedral GaVS using low-temperature piezoresponse
force microscopy. We observed mechanically and electrically compatible lamellar
domain patterns, where the lamellae are aligned parallel to the (100)-type
planes with a typical spacing between 100 nm-1.2 m. We expect that the
control of ferroelectric domain size in polar skyrmion hosts can be exploited
for the spatial confinement and manupulation of N{\'e}el-type skyrmions
Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
International audienceThe extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly apply current Antarctic PSC occurrence directly to the Arctic stratosphere. Future Arctic PSC occurrence, and thus ozone loss, will depend on the shape and barotropy of the vortex rather than on the minimum temperatures
Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films
We report room-temperature ferromagnetism in highly conducting transparent
anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on
LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray
diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption
spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry
(TOF-SIMS) indicated negligible magnetic contaminants in the films. The
presence of ferromagnetism with concomitant large carrier densities was
determined by a combination of superconducting quantum interference device
(SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic
circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD)
and was supported by first-principle calculations. SXMCD and XAS measurements
revealed a 90% contribution to ferromagnetism from the Ti ions and a 10%
contribution from the O ions. RBS/channelling measurements show complete Ta
substitution in the Ti sites though carrier activation was only 50% at 5% Ta
concentration implying compensation by cationic defects. The role of Ti vacancy
and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS)
respectively. It was found that in films with strong ferromagnetism, the Ti
vacancy signal was strong while Ti3+ signal was absent. We propose (in the
absence of any obvious exchange mechanisms) that the localised magnetic
moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers.
Cationic-defect-induced magnetism is an alternative route to ferromagnetism in
wide-band-gap semiconducting oxides without any magnetic elements.Comment: 21 pages, 10 figures, to appear in Philosophical Transaction - Royal
Soc.
Doping dependence of spin and orbital correlations in layered manganites
We investigate the interplay between spin and orbital correlations in
monolayer and bilayer manganites using an effective spin-orbital t-J model
which treats explicitly the e_g orbital degrees of freedom coupled to classical
t_{2g} spins. Using finite clusters with periodic boundary conditions, the
orbital many-body problem is solved by exact diagonalization, either by
optimizing spin configuration at zero temperature, or by using classical
Monte-Carlo for the spin subsystem at finite temperature. In undoped
two-dimensional clusters, a complementary behavior of orbital and spin
correlations is found - the ferromagnetic spin order coexists with alternating
orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin
superexchange, coexists with ferro-orbital order. With finite crystal field
term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a
gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2
orbital occupation under increasing doping. The present electronic model is
sufficient to explain the stability of the CE phase in monolayer manganites at
doping x=0.5, and also yields the C-type antiferromagnetic phase found in
Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic
phases and the accompanying orbital order change with increasing doping. Here
the model predicts C-AF and G-AF phases at high doping x>0.75, as found
experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.Comment: 23 pages, 21 figure
The role of the pion cloud in electroproduction of the (1232)
We calculate the ratios and of the multipole amplitudes for
electroproduction of the (1232) in the range of photon virtuality
~GeV in a chiral chromodielectric model and a linear
-model. We find that relatively large experimental values can be
explained in terms of the pion contribution alone; the contribution arising
from d-state quark admixture remains below 10\%. We describe the pion cloud as
a coherent state and use spin and isospin projection to obtain the physical
nucleon and the . The and amplitudes are reasonably
well reproduced in the -model; in the chromodielectric model, however,
they are a factor of two too small.Comment: 10 pages LaTeX2e, 3 LaTeX figures within the text; Requires
elsart.cls (included in the self-unpacking uuencoded gzipped file). (Accepted
for publication in Phys. Lett. B
Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry
Arctic boundary-layer clouds in the vicinity of Svalbard (78° N, 15° E) were observed with airborne remote sensing and in situ methods. The cloud optical thickness and the droplet effective radius are retrieved from spectral radiance data from the nadir spot (1.5°, 350–2100 nm) and from a nadir-centred image (40°, 400–1000 nm). Two approaches are used for the nadir retrieval, combining the signal from either two or five wavelengths. Two wavelengths are found to be sufficient for an accurate retrieval of the cloud optical thickness, while the retrieval of droplet effective radius is more sensitive to the number of wavelengths. Even with the comparison to in-situ data, it is not possible to definitely answer the question which method is better. This is due to unavoidable time delays between the in-situ measurements and the remote-sensing observations, and to the scarcity of vertical in-situ profiles within the cloud
- …
