622 research outputs found
Bond angle distribution in amorphous germania and silica
The distribution of Ge-O-Ge and Si-O-Si bond angles alpha in amorphous
germania and silica is re-determined on the basis of diffraction experiments.
The bond angle alpha joining adjacent tetrahedra is the central parameter of
any continuous random network description (CRN) of these glasses. New high
energy photon diffraction experiments on amorphous germania (at photon energies
of 97 and 149 keV) are presented, covering the momentum transfer 0.6-33.5
AA^{-1}. In photon diffraction experiments on GeO2 the contribution of the OO
pairs is very small. To obtain a similar information for amorphous SiO2, high
energy photon diffraction experiments have been combined with neutron
diffraction data on amorphous silica in order to eliminate the OO- partial
structure factor. With this technique it is shown that the Si-O-Si angle
distribution is fairly narrow (sigma=7.5 degree) and in fact comparable in
width to the Ge-O-Ge angle distribution (sigma=8.3 degree), a result which
differs from current opinion. The narrower distribution found in this study are
in much better agreement to the determinations based on 29Si-MAS-NMR. Among the
various models relating the chemical shift to the bond angle, best agreement is
found with those models based on the secant model. Sharp components in the bond
angle distribution can be excluded within the reached real space resolution of
0.09 AA.Comment: 12 pages LATEX, 13 Postscript figures, experimental data includes as
LATEX comment
Heuristics as decision rules: Part I: the single consumer
Many consumption prices are highly volatile. It would certainly overburden our cognitive system to fully adjust to all these changes. Households therefore often rely on simple heuristics when deciding what to consume, e.g. in the form of a constant budget share for a specific consumption commodity, like a vacation, or of a constant consumption amount for lowcost commodities as food items. Using utility functions we can measure the welfare loss, caused by such heuristics, and to what extent this can be reduced by adaptation. In the present Part I the analysis is mainly restricted to a single consumer with a Cobb-Douglas utility function. General utility functions will also be considered. Part II will study exchange economies
The Atomic and Electronic Structure of Liquid N- Methylformamide as Determined from Diffraction Experiments
The structure of liquid N-methylformamide (NMF) has been investigated using
synchrotron radiation at 77 and 95 keV. The use of high energy photons has
several advantages, in this case especially the large accessible momentum
transfer range, the low absorption and the direct comparability with neutron
diffraction. The range of momentum transfer covered is 0.6 \AA Q
24.0 \AA. Neutron diffraction data on the same sample in the same
momentum transfer range have been published previously. In that study two
differently isotope - substituted species were investigated. In order to
compare neutron and photon diffraction data properly Reverse Monte Carlo (RMC-)
simulations have been performed. Some modifications had to be added to the
standard RMC- code introducing different constraints for inter- and
intramolecular distances as these distances partly overlap in liquid NMF. RMC-
simulations having only the neutron data as input were carried out in order to
test the quality of the X-ray data. The photon structure factor calculated from
the RMC- configurations is found to agree well with the present experimental
data, while it deviates considerably from earlier X-ray work using low energy
photons (17 keV). Finally we discuss whether the different interaction
mechanisms of neutrons and photons can be used to directly access the
electronic structure in the liquid. Evidence is presented that the elastic self
scattering part of liquid NMF is changed with respect to the independent atom
approximation. This modification can be accounted for by a simple charged atoms
model.Comment: Accepted for publication in Molecular Physics, LaTex file, 12 pages,
figures not include
The impact of uncertainty on the effect of rate of return regulation remains highly uncertain
Structure and dynamics of a model glass: influence of long-range forces
We vary the amplitude of the long-range Coulomb forces within a classical
potential describing a model silica glass and study the consequences on the
structure and dynamics of the glass, via molecular dynamics simulations. This
model allows us to follow the variation of specific features such as the First
Sharp Diffraction Peak and the Boson Peak in a system going continuously from a
fragile (no Coulomb forces) to a strong (with Coulomb forces) glass. In
particular we show that the characteristic features of a strong glass
(existence of medium range order, bell-shaped ring size distribution, sharp
Boson peak) appear as soon as tetrahedral units are formed.Comment: 5 pages, 4 figures. To be published in J.Phys.: C
A multiple length scale description of the mechanism of elastomer stretching
Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy.</p
Incommensurate magnetism near quantum criticality in CeNiAsO
Two phase transitions in the tetragonal strongly correlated electron system
CeNiAsO were probed by neutron scattering and zero field muon spin rotation.
For = 8.7(3) K, a second order phase transition yields an
incommensurate spin density wave with wave vector . For = 7.6(3) K, we find co-planar commensurate order with a
moment of , reduced to of the saturation moment of the
Kramers doublet ground state, which we establish by
inelastic neutron scattering. Muon spin rotation in
shows the commensurate order only exists for x 0.1 so the transition at
= 0.4(1) is from an incommensurate longitudinal spin density wave to a
paramagnetic Fermi liquid
Nematic Fluctuations in Iron-Oxychalcogenide Mott Insulators
Nematic fluctuations occur in a wide range of physical systems from liquid
crystals to biological molecules to solids such as exotic magnets, cuprates and
iron-based high- superconductors. Nematic fluctuations are thought to be
closely linked to the formation of Cooper-pairs in iron-based superconductors.
It is unclear whether the anisotropy inherent in this nematicity arises from
electronic spin or orbital degrees of freedom. We have studied the iron-based
Mott insulators LaOFeO = (S, Se) which are
structurally similar to the iron pnictide superconductors. They are also in
close electronic phase diagram proximity to the iron pnictides. Nuclear
magnetic resonance (NMR) revealed a critical slowing down of nematic
fluctuations as observed by the spin-lattice relaxation rate (). This is
complemented by the observation of a change of electrical field gradient over a
similar temperature range using M\"ossbauer spectroscopy. The neutron pair
distribution function technique applied to the nuclear structure reveals the
presence of local nematic fluctuations over a wide temperature range
while neutron diffraction indicates that global symmetry is preserved.
Theoretical modeling of a geometrically frustrated spin- Heisenberg model
with biquadratic and single-ion anisotropic terms provides the interpretation
of magnetic fluctuations in terms of hidden quadrupolar spin fluctuations.
Nematicity is closely linked to geometrically frustrated magnetism, which
emerges from orbital selectivity. The results highlight orbital order and spin
fluctuations in the emergence of nematicity in Fe-based oxychalcogenides. The
detection of nematic fluctuation within these Mott insulator expands the group
of iron-based materials that show short-range symmetry-breaking
- …
