5,984 research outputs found

    On a realistic interpretation of quantum mechanics

    Get PDF
    The best mathematical arguments against a realistic interpretation of quantum mechanics - that gives definite but partially unknown values to all observables - are analysed and shown to be based on reasoning that is not compelling. This opens the door for an interpretation that, while respecting the indeterministic nature of quantum mechanics, allows to speak of definite values for all observables at any time that are, however, only partially measurable. The analysis also suggests new ways to test the foundations of quantum theory.Comment: 21 page

    Quantum field theory as eigenvalue problem

    Full text link
    A mathematically well-defined, manifestly covariant theory of classical and quantum field is given, based on Euclidean Poisson algebras and a generalization of the Ehrenfest equation, which implies the stationary action principle. The theory opens a constructive spectral approach to finding physical states both in relativistic quantum field theories and for flexible phenomenological few-particle approximations. In particular, we obtain a Lorentz-covariant phenomenological multiparticle quantum dynamics for electromagnetic and gravitational interaction which provides a representation of the Poincare group without negative energy states. The dynamics reduces in the nonrelativistic limit to the traditional Hamiltonian multiparticle description with standard Newton and Coulomb forces. The key that allows us to overcome the traditional problems in canonical quantization is the fact that we use the algebra of linear operators on a space of wave functions slightly bigger than traditional Fock spaces.Comment: 32 page

    An optimal subgradient algorithm for large-scale convex optimization in simple domains

    Full text link
    This paper shows that the optimal subgradient algorithm, OSGA, proposed in \cite{NeuO} can be used for solving structured large-scale convex constrained optimization problems. Only first-order information is required, and the optimal complexity bounds for both smooth and nonsmooth problems are attained. More specifically, we consider two classes of problems: (i) a convex objective with a simple closed convex domain, where the orthogonal projection on this feasible domain is efficiently available; (ii) a convex objective with a simple convex functional constraint. If we equip OSGA with an appropriate prox-function, the OSGA subproblem can be solved either in a closed form or by a simple iterative scheme, which is especially important for large-scale problems. We report numerical results for some applications to show the efficiency of the proposed scheme. A software package implementing OSGA for above domains is available
    corecore