30,543 research outputs found
Thermal barrier coating life-prediction model development
Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models
Learning and Communication in Sender-Receiver Games: An Econometric Investigation
Learning and communication play important roles in coordinating activities. Game theory and experiments have made a significant contribution to our understanding and appreciation for the issues surrounding learning and communication in coordination. However, the results of past experimental studies provide conflicting results about the performance of learning models. Moreover, the interaction between learning and communication has not been systematically investigated. Our long run objective is to overcome the conflicting results and to provide a better understanding of the interaction. To this end, we econometrically investigate a sender-receiver game environment where communication is necessary for coordination and learning is essential for communication.
Determining topological order from a local ground state correlation function
Topological insulators are physically distinguishable from normal insulators
only near edges and defects, while in the bulk there is no clear signature to
their topological order. In this work we show that the Z index of topological
insulators and the Z index of the integer quantum Hall effect manifest
themselves locally. We do so by providing an algorithm for determining these
indices from a local equal time ground-state correlation function at any
convenient boundary conditions. Our procedure is unaffected by the presence of
disorder and can be naturally generalized to include weak interactions. The
locality of these topological indices implies bulk-edge correspondence theorem.Comment: 7 pages, 3 figures. Major changes: the paper was divided into
sections, the locality of the order in 3D topological insulators is also
discusse
Boundary layer bleed system study for a full-scale, mixed-compression inlet with 45 percent internal contraction
The results of an experimental bleed development study for a full-scale, Mach 2.5, axisymmetric, mixed-compression inlet were presented. The inlet was designed to satisfy the airflow requirements of the TF30-P-3 turbofan engine. Capabilities for porous bleed on the cowl surface and ram-scoop/flush-slot bleed on the centerbody were provided. A configuration with no bleed on the cowl achieved a minimum stable, diffuser exit, total pressure recovery of 0.894 with a centerbody-bleed mass flow ratio of 0.02. Configurations with cowl bleed had minimum stable recoveries as high as 0.900 but suffered range decrement penalties from the increased bleed mass flow removal. Limited inlet stability and unstart angle-of-attack data are presented
Universal Uncertainty Principle in the Measurement Operator Formalism
Heisenberg's uncertainty principle has been understood to set a limitation on
measurements; however, the long-standing mathematical formulation established
by Heisenberg, Kennard, and Robertson does not allow such an interpretation.
Recently, a new relation was found to give a universally valid relation between
noise and disturbance in general quantum measurements, and it has become clear
that the new relation plays a role of the first principle to derive various
quantum limits on measurement and information processing in a unified
treatment. This paper examines the above development on the noise-disturbance
uncertainty principle in the model-independent approach based on the
measurement operator formalism, which is widely accepted to describe a class of
generalized measurements in the field of quantum information. We obtain
explicit formulas for the noise and disturbance of measurements given by the
measurement operators, and show that projective measurements do not satisfy the
Heisenberg-type noise-disturbance relation that is typical in the gamma-ray
microscope thought experiments. We also show that the disturbance on a Pauli
operator of a projective measurement of another Pauli operator constantly
equals the square root of 2, and examine how this measurement violates the
Heisenberg-type relation but satisfies the new noise-disturbance relation.Comment: 11 pages. Based on the author's invited talk at the 9th International
Conference on Squeezed States and Uncertainty Relations (ICSSUR'2005),
Besancon, France, May 2-6, 200
Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences
We consider the product of infinitely many copies of a spin-
system. We construct projection operators on the corresponding nonseparable
Hilbert space which measure whether the outcome of an infinite sequence of
measurements has any specified property. In many cases, product
states are eigenstates of the projections, and therefore the result of
measuring the property is determined. Thus we obtain a nonprobabilistic quantum
analogue to the law of large numbers, the randomness property, and all other
familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe
Bubble statistics and coarsening dynamics for quasi-two dimensional foams with increasing liquid content
We report on the statistics of bubble size, topology, and shape and on their
role in the coarsening dynamics for foams consisting of bubbles compressed
between two parallel plates. The design of the sample cell permits control of
the liquid content, through a constant pressure condition set by the height of
the foam above a liquid reservoir. We find that in the scaling state, all
bubble distributions are independent not only of time but also of liquid
content. For coarsening, the average rate decreases with liquid content due to
the blocking of gas diffusion by Plateau borders inflated with liquid. By
observing the growth rate of individual bubbles, we find that von Neumann's law
becomes progressively violated with increasing wetness and with decreasing
bubble size. We successfully model this behavior by explicitly incorporating
the border blocking effect into the von Neumann argument. Two dimensionless
bubble shape parameters naturally arise, one of which is primarily responsible
for the violation of von Neumann's law for foams that are not perfectly dry
Experimental and analytical study of a conically diffused flow with a nearly separated boundary layer
Turbulence measurements were obtained in the nearly separated flow in a 13 deg total angle of divergence conical diffuser coupled to a constant area tailpipe. Air at 207 newtons per square centimeter and 308 K provided an inlet velocity of about 51 meters per second at an inlet unit Reynolds number of 63.7 million per meter. Very high longitudinal turbulence intensities accompanied the diffusion process with peak values approaching 40 percent when normalized by the local centerline velocity. Predictions of the pressure recovery coefficient using a mixing length concept were good in the early stages of diffusion. In the latter stages of diffusion satisfactory predictions of the pressure recovery were obtained with an empirical method
- …
