11,090 research outputs found
FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions
In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo
Direct measurement of general quantum states using weak measurement
Recent work [J.S. Lundeen et al. Nature, 474, 188 (2011)] directly measured
the wavefunction by weakly measuring a variable followed by a normal (i.e.
`strong') measurement of the complementary variable. We generalize this method
to mixed states by considering the weak measurement of various products of
these observables, thereby providing the density matrix an operational
definition in terms of a procedure for its direct measurement. The method only
requires measurements in two bases and can be performed `in situ', determining
the quantum state without destroying it.Comment: This is a later and very different version of arXiv:1110.0727v3
[quant-ph]. New content: a method to directly measure each element of the
density matrix, specific Hamiltonians to weakly measure the product of
non-commuting observables, and references to recent related wor
The Alzheimer variant of Lewy body disease: A pathologically confirmed case-control study
The objective of the study was to identify clinical features that distinguish patients with dementia with Lewy bodies (DLB), who were classified as Alzheimer's disease ( AD) patients, from patients with AD. We examined a group of 27 patients from our memory clinic, originally diagnosed with AD, of whom 6 were postmortem found to have DLB. For the present study, we compared cognitive, noncognitive and neurological symptoms between the two groups. We found that there were no differences on ratings of dementia and scales for activities of daily living. Patients with DLB performed better on the MMSE and the memory subtest of the CAMCOG, but there was no difference in any other cognitive domain. Furthermore, genetic risk factors, including family history of dementia or allele frequency of the apolipoprotein epsilon 4, did not discriminate between the two groups, and there were no differences on CCT scans. Taken together, our findings suggest that Lewy body pathology may be present in patients who do not show the typical clinical features which distinguish DLB from AD. Copyright (C) 2005 S. Karger AG, Basel
Tunable Fano Resonances in Transport through Microwave Billiards
We present a tunable microwave scattering device that allows the controlled
variation of Fano line shape parameters in transmission through quantum
billiards. Transport in this device is nearly fully coherent. By comparison
with quantum calculations, employing the modular recursive Green's-function
method, the scattering wave function and the degree of residual decoherence can
be determined. The parametric variation of Fano line shapes in terms of
interacting resonances is analyzed.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Solid-State Excitation Laser for Laser-Ultrasonics
The inspection speed of laser-ultrasonics compared with conventional ultrasonic testing is limited by the pulse repetition rate of the excitation laser. The maximum pulse repetition rate reported up to now for CO2-lasers, which are presently used for nearly all systems, is in the range of 400 Hz. In this paper a new approach based on a diode-pumped solid-state laser is discussed, which is currently being developed. This new excitation laser is designed for a repetition rate of 1 kHz and will operate at a mid-IR wavelength of 3.3 m. The higher repeti-tion rate enables a higher inspection speed, whereas the mid-IR wavelength anticipates a better coupling efficiency. The total power for pumping the laser crystals is transported via flexible optical fibres to the compact laser head, thus allowing operation on a robot arm. The laser head consists of a master oscillator feeding several lines of power amplifiers and in-cludes nonlinear optical wavelength conversion by an optical parametric process. It is char-acterized by a modular construction which provides optimal conditions for operation at high average power as well as for easy maintenance. These features will enable building reliable, long-lived, rugged, smart laser ultrasonic systems in futur
Comment on "Control landscapes are almost always trap free: a geometric assessment"
We analyze a recent claim that almost all closed, finite dimensional quantum
systems have trap-free (i.e., free from local optima) landscapes (B. Russell
et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors
in the proof which compromise the authors' conclusion.
Interested readers are highly encouraged to take a look at the "rebuttal"
(see Ref. [1]) of this comment published by the authors of the criticized work.
This "rebuttal" is a showcase of the way the erroneous and misleading
statements under discussion will be wrapped up and injected in their future
works, such as R. L. Kosut et.al, arXiv:1810.04362 [quant-ph] (2018).Comment: 6 pages, 1 figur
- …
