706 research outputs found

    Is a 3-mm intrafractional margin sufficient for daily image-guided intensity-modulated radiation therapy of prostate cancer?

    Get PDF
    PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p\u3c0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p\u3c0.001). Of the 46 patients, three patients\u27 prostates and eight patients\u27 SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p\u3c0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage

    Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    Get PDF
    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were \u27radiologically thin\u27 or \u27thick\u27. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency\u27s dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. © 2009 Institute of Physics and Engineering in Medicine

    Normal tissue damage: Its importance, history and challenges for the future

    Get PDF
    Sir Oliver Scott, a philanthropist and radiation biologist and, therefore, the epitome of a gentleman and a scholar, was an early Director of the BECC Radiobiology Research Unit at Mount Vernon. His tenure preceded that of Jack Fowler, with both contributing to basic, translational and clinical thought and application in radiation across the globe. With respect to this review, Fowler\u27s name in particular has remained synonymous with the use of models, both animal and mathematical, that assess and quantify the biological mechanisms that underlie radiation-associated normal tissue toxicities. An understanding of these effects is critical to the optimal use of radiation therapy in the clinic; however, the role that basic sciences play in clinical practice has been undergoing considerable change in recent years, particularly in the USA, where there has been a growing emphasis on engineering and imaging to improve radiation delivery, with empirical observations of clinical outcome taking the place of models underpinned by evidence from basic science experiments. In honour of Scott and Fowler\u27s work, we have taken this opportunity to review how our respective fields of radiation biology and radiation physics have intertwined over the years, affecting the clinical use of radiation with respect to normal tissue outcomes. We discuss the past and current achievements, with the hope of encouraging a revived interest in physics and biology as they relate to radiation oncology practice, since, like Scott and Fowler, we share the goal of improving the future outlook for cancer patients

    The physics of proton therapy

    Get PDF
    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy

    A review of radiotherapy-induced late effects research after advanced technology treatments

    Get PDF
    The number of incident cancers and long-term cancer survivors is expected to increase substantially for at least a decade. Advanced technology radiotherapies, e.g., using beams of protons and photons, offer dosimetric advantages that theoretically yield better outcomes. In general, evidence from controlled clinical trials and epidemiology studies are lacking. To conduct these studies, new research methods and infrastructure will be needed. In the paper, we review several key research methods of relevance to late effects after advanced technology proton-beam and photon-beam radiotherapies. In particular, we focus on the determination of exposures to therapeutic and stray radiation and related uncertainties, with discussion of recent advances in exposure calculation methods, uncertainties, in silico studies, computing infrastructure, electronic medical records, and risk visualization. We identify six key areas of methodology and infrastructure that will be needed to conduct future outcome studies of radiation late effects

    Gas-to-wall absorbed dose conversion factors for neutron energies of 25 to 250 MeV

    Get PDF
    Cavity chamber absorbed dose measurements do not usually strictly adhere to the conditions of the Fano theorem and therefore the differences in the gas and wall mass stopping powers must be taken into account. Values of gas-to-wall absorbed dose conversion factors rm,g were calculated for neutron energies of 25 to 250 MeV for detectors with walls of C, O, Mg, Al, Si, Fe, Zr, AlN, Al2O3, SiO2, ZrO2, and A-150 tissue-equivalent (TE) plastic and with gas cavities of acetylene, dry air, Ar, an Ar-CO2 mixture, CO2, isobutane, isobutane-based TE, methane, methane-based TE, propane, and propane-based TE. The rm,g calculations required initial spectral fluences of 1H, 2H, 3H, 3He, and 4He ions released by neutron reactions in the walls, and these were calculated with the Los Alamos High Energy Transport code. Mass-stopping-power data were taken from Ziegler and co-workers. Additional calculations were made in order to test the sensitivity of rm,g to input data from other sources, i.e., ion spectral fluences from the ALICE nuclear reaction code and mass-stopping powers from the recent ICRU evaluation. © 1997 Academic Press

    Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    Get PDF
    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle. © 2010 Institute of Physics and Engineering in Medicine
    corecore