3,472 research outputs found

    Dynamic Limits on Planar Libration-Orbit Coupling Around an Oblate Primary

    Full text link
    This paper explores the dynamic properties of the planar system of an ellipsoidal satellite in an equatorial orbit about an oblate primary. In particular, we investigate the conditions for which the satellite is bound in librational motion or when the satellite will circulate with respect to the primary. We find the existence of stable equilibrium points about which the satellite can librate, and explore both the linearized and non-linear dynamics around these points. Absolute bounds are placed on the phase space of the libration-orbit coupling through the use of zero-velocity curves that exist in the system. These zero-velocity curves are used to derive a sufficient condition for when the satellite's libration is bound to less than 90 degrees. When this condition is not satisfied so that circulation of the satellite is possible, the initial conditions at zero libration angle are determined which lead to circulation of the satellite. Exact analytical conditions for circulation and the maximum libration angle are derived for the case of a small satellite in orbits of any eccentricity.Comment: Submitted to Celestial Mechanics and Dynamical Astronom

    Binge-Watching Netflix? Insights From Data Donations

    Get PDF
    Netflix is often credited with mainstreaming binge-watching through its release strategy and interface features. However, despite this reputation, data on actual consumption patterns remains scarce, enabling Netflix to shape the narrative about how content is consumed on its platform and what this implies about content quality and viewer attentiveness. This article provides unique empirical insights into Netflix viewing patterns in the Netherlands, based on a pilot study involving data donated by 126 subscribers. It introduces a definition of binge-watching tailored for computational analysis and offers an empirical understanding of its prevalence and manifestations. The findings suggest that binge-watching is a diverse and complex activity. While it is seemingly popular, in that it is practiced by many subscribers, the data suggest it occurs less frequently and is less extreme than would be expected from the hype

    On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation

    Get PDF
    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99¿100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Changes in Dietary Fat Intake and Projections for Coronary Heart Disease Mortality in Sweden: A Simulation Study.

    Get PDF
    OBJECTIVE: In Sweden, previous favourable trends in blood cholesterol levels have recently levelled off or even increased in some age groups since 2003, potentially reflecting changing fashions and attitudes towards dietary saturated fatty acids (SFA). We aimed to examine the potential effect of different SFA intake on future coronary heart disease (CHD) mortality in 2025. METHODS: We compared the effect on future CHD mortality of two different scenarios for fat intake a) daily SFA intake decreasing to 10 energy percent (E%), and b) daily SFA intake rising to 20 E%. We assumed that there would be moderate improvements in smoking (5%), salt intake (1g/day) and physical inactivity (5% decrease) to continue recent, positive trends. RESULTS: In the baseline scenario which assumed that recent mortality declines continue, approximately 5,975 CHD deaths might occur in year 2025. Anticipated improvements in smoking, dietary salt intake and physical activity, would result in some 380 (-6.4%) fewer deaths (235 in men and 145 in women). In combination with a mean SFA daily intake of 10 E%, a total of 810 (-14%) fewer deaths would occur in 2025 (535 in men and 275 in women). If the overall consumption of SFA rose to 20 E%, the expected mortality decline would be wiped out and approximately 20 (0.3%) additional deaths might occur. CONCLUSION: CHD mortality may increase as a result of unfavourable trends in diets rich in saturated fats resulting in increases in blood cholesterol levels. These could cancel out the favourable trends in salt intake, smoking and physical activity

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    FRAX (R): Prediction of Major Osteoporotic Fractures in Women from the General Population: The OPUS Study

    Get PDF
    Purposes: The aim of this study was to analyse how well FRAXH predicts the risk of major osteoporotic and vertebral fractures over 6 years in postmenopausal women from general population. Patients and methods: The OPUS study was conducted in European women aged above 55 years, recruited in 5 centers from random population samples and followed over 6 years. The population for this study consisted of 1748 women (mean age 74.2 years) with information on incident fractures. 742 (43.1%) had a prevalent fracture; 769 (44%) and 155 (8.9%) of them received an antiosteoporotic treatment before and during the study respectively. We compared FRAXH performance with and without bone mineral density (BMD) using receiver operator characteristic (ROC) c-statistical analysis with ORs and areas under receiver operating characteristics curves (AUCs) and net reclassification improvement (NRI). Results: 85 (4.9%) patients had incident major fractures over 6 years. FRAXH with and without BMD predicted these fractures with an AUC of 0.66 and 0.62 respectively. The AUC were 0.60, 0.66, 0.69 for history of low trauma fracture alone, age and femoral neck (FN) BMD and combination of the 3 clinical risk factors, respectively. FRAXH with and without BMD predicted incident radiographic vertebral fracture (n = 65) with an AUC of 0.67 and 0.65 respectively. NRI analysis showed a significant improvement in risk assignment when BMD is added to FRAXH. Conclusions: This study shows that FRAXH with BMD and to a lesser extent also without FN BMD predict major osteoporotic and vertebral fractures in the general population

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators

    Get PDF
    This is the peer reviewed version of the following article: “Fargas Marques, A., Costa Castelló, R. (2017) Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators, 1-13.” which has been published in final form at [doi: 10.1007/s11071-017-3633-8]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."Electrostatic parallel-plate actuators are a common way of actuating microelectromechanical systems, both statically and dynamically. Nevertheless, actuation voltages and oscillations are limited by the nonlinearity of the actuator that leads to the pull-in phenomena. This work presents a new approach to obtain the electrostatic parallel-plate actuation voltage, which allows to freely select the desired frequency and amplitude of oscillation. Harmonic Balance analysis is used to determine the needed actuation voltage and to choose the most energy-efficient actuation frequency. Moreover, a new two-sided actuation approach is presented that allows to actuate the device in all the stable range using the Harmonic Balance Voltage.Peer ReviewedPostprint (author's final draft
    corecore