2,595 research outputs found
Spin and Statistics and First Principles
It was shown in the early Seventies that, in Local Quantum Theory (that is
the most general formulation of Quantum Field Theory, if we leave out only the
unknown scenario of Quantum Gravity) the notion of Statistics can be grounded
solely on the local observable quantities (without assuming neither the
commutation relations nor even the existence of unobservable charged field
operators); one finds that only the well known (para)statistics of Bose/Fermi
type are allowed by the key principle of local commutativity of observables. In
this frame it was possible to formulate and prove the Spin and Statistics
Theorem purely on the basis of First Principles.
In a subsequent stage it has been possible to prove the existence of a
unique, canonical algebra of local field operators obeying ordinary Bose/Fermi
commutation relations at spacelike separations. In this general guise the Spin
- Statistics Theorem applies to Theories (on the four dimensional Minkowski
space) where only massive particles with finite mass degeneracy can occur. Here
we describe the underlying simple basic ideas, and briefly mention the
subsequent generalisations; eventually we comment on the possible validity of
the Spin - Statistics Theorem in presence of massless particles, or of
violations of locality as expected in Quantum Gravity.Comment: Survey based on a talk given at the Meeting on "Theoretical and
experimental aspects of the spin - statistics connection and related
symmetries", Trieste, Italy - October 21-25, 200
Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy
We show that the accuracy of energy-dispersive X-ray spectroscopy can be improved by analysing and comparing multiple lines from the same element. For each line, an effective k-factor can be defined that varies as a function of the intensity ratio of multiple lines (e.g. K/L) from the same element. This basically performs an internal self-consistency check in the quantification using differently absorbed X-ray lines, which is in principle equivalent to an absorption correction as a function of specimen thickness but has the practical advantage that the specimen thickness itself does not actually need to be measured
From error bounds to the complexity of first-order descent methods for convex functions
This paper shows that error bounds can be used as effective tools for
deriving complexity results for first-order descent methods in convex
minimization. In a first stage, this objective led us to revisit the interplay
between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can
show the equivalence between the two concepts for convex functions having a
moderately flat profile near the set of minimizers (as those of functions with
H\"olderian growth). A counterexample shows that the equivalence is no longer
true for extremely flat functions. This fact reveals the relevance of an
approach based on KL inequality. In a second stage, we show how KL inequalities
can in turn be employed to compute new complexity bounds for a wealth of
descent methods for convex problems. Our approach is completely original and
makes use of a one-dimensional worst-case proximal sequence in the spirit of
the famous majorant method of Kantorovich. Our result applies to a very simple
abstract scheme that covers a wide class of descent methods. As a byproduct of
our study, we also provide new results for the globalization of KL inequalities
in the convex framework.
Our main results inaugurate a simple methodology: derive an error bound,
compute the desingularizing function whenever possible, identify essential
constants in the descent method and finally compute the complexity using the
one-dimensional worst case proximal sequence. Our method is illustrated through
projection methods for feasibility problems, and through the famous iterative
shrinkage thresholding algorithm (ISTA), for which we show that the complexity
bound is of the form where the constituents of the bound only depend
on error bound constants obtained for an arbitrary least squares objective with
regularization
Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future
How acceptable are antiretrovirals for the prevention of sexually transmitted HIV? A review of research on the acceptability of oral pre-exposure prophylaxis and treatment as prevention
Recent research has demonstrated how antiretrovirals (ARVs) could be effective in the prevention of sexually transmitted HIV. We review research on the acceptability of oral pre-exposure prophylaxis (PrEP) and treatment as prevention (TasP) for HIV prevention amongst potential users. We consider with whom, where and in what context this research has been conducted, how acceptability has been approached, and what research gaps remain. Findings from 33 studies show a lack of TasP research, PrEP studies which have focused largely on men who have sex with men (MSM) in a US context, and varied measures of acceptability. In order to identify when, where and for whom PrEP and TasP would be most appropriate and effective, research is needed in five areas: acceptability of TasP to people living with HIV; motivation for PrEP use and adherence; current perceptions and management of risk; the impact of broader social and structural factors; and consistent definition and operationalisation of acceptability which moves beyond adherence
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome
The Vietnamese medicinal and food plant Abelmoschus sagittifolius (Kurz.) Merr., an underestimated resource
In Vietnam, “Sam Bo Chinh” [Abelmoschus sagittifolius (Kurz.) Merr., Malvaceae] market has rapidly expanded following the COVID-19 pandemic due to its health benefits. Since the 19th century, its root has been utilized in Traditional Vietnamese Medicine with properties similar to fresh Ginseng, particularly for treating fatigue, neurasthenia, sore throat, and stomach ache. Similar applications of its root are documented in Traditional Chinese Medicine, but leaf and fruit are also employed for detoxification, phlegm expulsion, liver softening, and kidney nourishment. However, further evidence is required to assess its medicinal value and explore additional avenues for development. Articles were searched on PubMed, CNKI, Google Scholar, ResearchGate, and VISTA using the four commonly used synonyms as keywords. Duplications and articles on other species were then screened out. Related books, articles, and websites were also discussed. The species has unique characteristics that are distinctive from other Malvaceae species. Traditional Vietnamese and Chinese medicine practitioners describe similar properties of A. sagittifolius root as qi and yin tonifying material. Various traditional Vietnamese formulas and Chinese patents illustrate the values of the root, leaf, or fruit to treat digestive, respiratory, neuropsychological, and genitourinary disorders. Pharmacological research and phytochemical profiles also highlight the ability of A. sagittifolius root to be an adjuvant treatment for post-COVID-19 symptoms with gastric protection, stamina enhancement, antioxidant, anti-inflammatory, and anti-cancer activities, and simultaneously, they suggest more potential such as neuroprotection, immunomodulatory and anti-hypertention. Moreover, cultivating and processing techniques are simple. So, A. sagittifolius production can be industrialized and developed into medicines or functional foods. However, the plant is not used in other countries and is not well-studied, so a more rigorous assessment of its phytochemical and pharmacological properties is needed. Its leaf and fruit also have different uses and can be developed and more medicinal potential
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
