20 research outputs found

    Conceptual Model Development for Holistic Building Fire Safety Performance Analysis

    Get PDF
    The evaluation of building performance during fires is a critical step in designing appropriate strategies. Inappropriate or incomplete performance evaluations can mislead fire safety design solutions, which may in turn result in unacceptable loss of life or building damage from fire. While various building fire safety performance evaluation models have been developed, they focus primarily on ‘hard’ characteristics, such as building construction type and fire protection measures. However, ‘soft’ characteristics, such as building design (architectural) features and occupant characteristics, which also significantly influence building fire safety performance, have not been comprehensively taken into account. In the current study, two conceptual performance models: a generic fire response model and an integrated characteristic interaction model, have been developed to represent the holistic building fire safety performance considering the effects of both hard and soft characteristics. In these models, various cause-effect relationships among building, people, and fire characteristics are identified at the different levels of detail. Based on the conceptual models, a quantitative model utilizing the parameter ranking method and weighted sum method, which are commonly used in analytical hierarchy process, is proposed as a tool to help evaluate building fire safety performance and to assist decision making process of developing fire safety design solutions

    Enhancing Building Fire Safety Performance by Reducing Miscommunication and Misconceptions

    Get PDF
    Building fire safety is driven by regulations and technical building codes, at least as a minimum requirement. As fire protection engineers (FPEs) design fire safety measures based on requirements in the regulations, they are often viewed as the primary agents in ensuring the fire safety of buildings. However, their mission often starts with given building design features, such as interior spatial layout, exterior shape, site plan, and so forth, which are mostly determined by architects. The only exception is where the FPE is invited to assist in the project planning, feasibility and early concept design stages of a project. Regardless, architects also can influence building fire safety performance, whether or not they explicitly acknowledge or understand this. Although architects design buildings within the boundaries of the regulatory requirements, the architect’s focus is often related to the visual and spatial aesthetics of buildings linked to building form and functionality, which are not subject to the regulations. These aesthetics can sometimes compete with fire safety objectives. As such, buildings can be unsafe in certain situations due to unintended effects of building design features on actual fire safety performance. This research describes the relationship between architecturally conceived building design features, design expectations for fire safety systems, and the actual or conceivable fire safety performance of the building. Steps are proposed that FPEs can take to identify and address potentially competing objectives and deliver increased fire safety performance

    Improvements on Flame Retardant Properties of PET/Montmorillonite Nanocomposite Caused by Polyborosiloxane

    Get PDF
    ABSTRACTA phenyl-containing highly cross linked polyborosiloxane (PBSiO) was synthesized as a flame retardant for polyethylene terephthalate (PET). We coated montmorillonite (MMT) clay, a very high aspect ratio and high specific surface area layered silicate with synthesized PBSiO to introduce synergism in flame retardation to the PET nanocomposite film that retained thermal and mechanical properties. This PBSiO has high thermal stability at the processing temperature (270-285° C) of PET and acts as a compatibilizer between PET and clay that are otherwise incompatible. During burning, the flame retardant PET containing PBSiO and MMT forms a protective borosilicatecarbonaceous intumescent char on the surface. Cone calorimeter tests were performed to evaluate key fire properties of the PET/PBSiO/MMT. The peak heat release rate (PHRR) of PET that contains 5 wt% PBSiO and 2.5 wt% MMT was reduced by 60% and similar trend in the reduction of mass loss rate of the nanocomposite was observed.</jats:p
    corecore