25 research outputs found
Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results
INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. Highlights: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups. Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.info:eu-repo/semantics/publishedVersio
Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia:GENFI results
INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. Highlights: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups. Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.</p
Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results
INTRODUCTION
Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers.
METHODS
We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non‐carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment.
RESULTS
Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset.
DISCUSSION
Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset.
Highlights
Gray matter perfusion declines in at‐risk genetic frontotemporal dementia (FTD).
Regional perfusion decline differs between at‐risk genetic FTD subgroups .
Hypoperfusion in the left thalamus is common across all presymptomatic groups.
Converters exhibit greater right frontal hypoperfusion than non‐converters past their expected conversion date.
Cerebral hypoperfusion is a potential early biomarker of genetic FTD
Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia:GENFI results
INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. Highlights: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups. Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.</p
Safety, tolerability, viral kinetics, and immune correlates of protection in healthy, seropositive UK adults inoculated with SARS-CoV-2: a single-centre, open-label, phase 1 controlled human infection study
Background: A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals.
Methods: Healthy, UK volunteers aged 18–30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal–nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete.
Findings: Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events.
Interpretation: Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development.
Funding: Wellcome Trust and Department for Health and Social Care
Heterogeneous antiretroviral drug distribution and HIV/SHIV detection in the gut of three species
HIV replication within tissues may increase in response to a reduced exposure to antiretroviral drugs. Traditional approaches to measuring drug concentrations in tissues are unable to characterize a heterogeneous drug distribution. Here, we used mass spectrometry imaging (MSI) to visualize the distribution of six HIV antiretroviral drugs in gut tissue sections from three species (two strains of humanized mice, macaques, and humans). We measured drug concentrations in proximity to CD3+ T cells that are targeted by HIV, as well as expression of HIV or SHIV RNA and expression of the MDR1 drug efflux transporter in gut tissue from HIV-infected humanized mice, SHIV-infected macaques, and HIV-infected humans treated with combination antiretroviral drug therapy. Serial 10-μm sections of snap-frozen ileal and rectal tissue were analyzed by MSI for CD3+ T cells and MDR1 efflux transporter expression by immunofluorescence and immunohistochemistry, respectively. The tissue slices were analyzed for HIV/SHIV RNA expression by in situ hybridization and for antiretroviral drug concentrations by liquid chromatography-mass spectrometry. The gastrointestinal tissue distribution of the six drugs was heterogeneous. Fifty percent to 60% of CD3+ T cells did not colocalize with detectable drug concentrations in the gut tissue. In all three species, up to 90% of HIV/SHIV RNA was found to be expressed in gut tissue with no exposure to drug. These data suggest that there may be gut regions with little to no exposure to antiretroviral drugs, which may result in low-level HIV replication contributing to HIV persistence
Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results
Introduction: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. Methods: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. Results: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. Discussion: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. Highlights: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD
Arterial Spin-labelled MRI Analyses to Advance Adolescent Bipolar Disorder Research and Clinical Applications
Cerebral blood flow (CBF) is foundational to brain function in health and disease. Through three distinct analyses, the aim of this thesis is to extend current understanding of CBF in adolescent bipolar disorder and to enable future understanding of CBF in other brain diseases. CBF measurement can interrogate the putative vascular underpinnings of bipolar disorder, however, the extent of CBF changes in the early stages of the disease is unknown. ASL MRI allows non-invasive imaging of brain physiology, including CBF, and is especially valuable when invasive methods are inappropriate, such as in adolescent psychiatry. Yet, technical advancements have only recently supported wider availability of ASL and this thesis focuses on remaining opportunities to: 1) study the multivariate relationships of CBF between brain regions in health and disease and 2) continue technological advancement of ASL workflows for researchers and clinicians alike.In the first study of this thesis, I present an analysis of multivariate patterns of CBF, and their relationship to neuroanatomy, in a large group of adolescents with and without bipolar disorder. The results show differences between adolescents with and without bipolar disorder with respect to patterns of CBF and their correspondence to inter-regional relationships of brain anatomy. In the second study, I identified a multivariate CBF phenotype related to adolescent bipolar disorder. This analysis extends that of the first study by using patterns of CBF in a classification scheme based on participant diagnosis. In the third study, I develop a fast and automated CBF image synthesis algorithm to address a bottleneck in the workflow of advanced ASL MRI. I demonstrate a significant analysis speedup over a standard workflow, show capability of hemodynamic parameter uncertainty estimation, and present preliminary evidence of generalizability to specific acquisition parameters.
This thesis employs three distinct ASL analyses to show multivariate phenotypes of CBF in adolescent bipolar disorder, and to support future study of CBF through image processing methods development. Together, these studies act toward understanding the physiological underpinnings of bipolar disorder, develop methods for CBF image analysis and synthesis, and support broad application of ASL in clinical neuroimaging research.Ph.D
Correspondence between patterns of cerebral blood flow and structure in adolescents with and without bipolar disorder
Adolescence is a period of rapid development of the brain’s inherent functional and structural networks; however, little is known about the region-to-region organization of adolescent cerebral blood flow (CBF) or its relationship to neuroanatomy. Here, we investigate both the regional covariation of CBF MRI and the covariation of structural MRI, in adolescents with and without bipolar disorder. Bipolar disorder is a disease with increased onset during adolescence, putative vascular underpinnings, and evidence of anomalous CBF and brain structure. In both groups, through hierarchical clustering, we found CBF covariance was principally described by clusters of regions circumscribed to the left hemisphere, right hemisphere, and the inferior brain; these clusters were spatially reminiscent of cerebral vascular territories. CBF covariance was associated with structural covariance in both the healthy group (n = 56; r = 0.20, p < 0.0001) and in the bipolar disorder group (n = 68; r = 0.36, p < 0.0001), and this CBF-structure correspondence was higher in bipolar disorder ( p = 0.0028). There was lower CBF covariance in bipolar disorder compared to controls between the left angular gyrus and pre- and post-central gyri. Altogether, CBF covariance revealed distinct brain organization, had modest correspondence to structural covariance, and revealed evidence of differences in bipolar disorder. </jats:p
