573 research outputs found
Recommended from our members
BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs
We present results from a survey carried out by the Balloon-borne Large
Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South
Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the
maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method
to estimate submillimeter galaxy number counts and find that they are in
agreement with other measurements made with the same instrument and with the
more recent results from Herschel/SPIRE. Thanks to the large field observed,
the new measurements give additional constraints on the bright end of the
counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m,
respectively and provide a multi-wavelength combined catalog of 232 sources
with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps
and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs
available at http://blastexperiment.info
Over half of the far-infrared background light comes from galaxies at z >= 1.2
Submillimetre surveys during the past decade have discovered a population of
luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z
<= 4, these massive submillimetre galaxies go through a phase characterized by
optically obscured star formation at rates several hundred times that in the
local Universe. Half of the starlight from this highly energetic process is
absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K
with spectral energy distributions peaking at 100 microns in the rest frame. At
1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns.
The cumulative effect of these galaxies is to yield extragalactic optical and
far-infrared backgrounds with approximately equal energy densities. Since the
initial detection of the far-infrared background (FIRB), higher-resolution
experiments have sought to decompose this integrated radiation into the
contributions from individual galaxies. Here we report the results of an
extragalactic survey at 250, 350 and 500 microns. Combining our results at 500
microns with those at 24 microns, we determine that all of the FIRB comes from
individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of
it. As expected, at the longest wavelengths the signal is dominated by
ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info
The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect
We present a first measurement of the stellar mass component of galaxy
clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5
um photometry from the Spitzer Space Telescope. Our sample consists of 14
clusters detected by the Atacama Cosmology Telescope (ACT), which span the
redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass
measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14}
MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the
characteristic magnitude (m*) and faint-end slope (alpha) to be similar to
those for IR-selected cluster samples. We perform the first measurements of the
scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy
(BCG) stellar mass and total cluster stellar mass (M500star). We find a
significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2
Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong
constraint on the slope of the relation due to the small sample size.
Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the
scaling with total stellar mass. The mass fraction in stars spans the range
0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL
J0237-4939) having an unusually low total stellar mass and the lowest stellar
mass fraction. For the five clusters with gas mass measurements available in
the literature, we see no evidence for a shortfall of baryons relative to the
cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure
Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures
Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe2/WSe2 heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe2/WSe2 heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures
BLAST: Correlations in the Cosmic Far-Infrared Background at 250, 350, and 500 microns Reveal Clustering of Star-Forming Galaxies
We detect correlations in the cosmic far-infrared background due to the
clustering of star-forming galaxies in observations made with the Balloon-borne
Large Aperture Submillimeter Telescope, BLAST, at 250, 350, and 500 microns. We
perform jackknife and other tests to confirm the reality of the signal. The
measured correlations are well fit by a power law over scales of 5-25
arcminutes, with Delta I/I = 15.1 +/- 1.7%. We adopt a specific model for
submillimeter sources in which the contribution to clustering comes from
sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z
<= 3.2, at 250, 350, and 500 microns, respectively. With these distributions,
our measurement of the power spectrum, P(k_theta), corresponds to linear bias
parameters, b = 3.8 +/- 0.6, 3.9 +/- 0.6 and 4.4 +/- 0.7, respectively. We
further interpret the results in terms of the halo model, and find that at the
smaller scales, the simplest halo model fails to fit our results. One way to
improve the fit is to increase the radius at which dark matter halos are
artificially truncated in the model, which is equivalent to having some
star-forming galaxies at z >= 1 located in the outskirts of groups and
clusters. In the context of this model we find a minimum halo mass required to
host a galaxy is log (M_min / M_sun) = 11.5 (+0.4/-0.1), and we derive
effective biases $b_eff = 2.2 +/- 0.2, 2.4 +/- 0.2, and 2.6 +/- 0.2, and
effective masses log (M_eff / M_sun) = 12.9 +/- 0.3, 12.8 +/- 0.2, and 12.7 +/-
0.2, at 250, 350, and 500 microns, corresponding to spatial correlation lengths
of r_0 = 4.9, 5.0, and 5.2 +/- 0.7 h^-1 Mpc, respectively. Finally, we discuss
implications for clustering measurement strategies with Herschel and Planck.Comment: Accepted for publication in the Astrophysical Journal. Maps and other
results available at http://blastexperiment.info
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
Submillimeter Number Counts From Statistical Analysis of BLAST Maps
We describe the application of a statistical method to estimate submillimeter
galaxy number counts from confusion limited observations by the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST). Our method is based on a
maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an
approach which has been used before to probe faint counts, the difference being
that here we advocate its use even for sources with relatively high
signal-to-noise ratios. This method has an advantage over standard techniques
of source extraction in providing an unbiased estimate of the counts from the
bright end down to flux densities well below the confusion limit. We
specifically analyse BLAST observations of a roughly 10 sq. deg. map centered
on the Great Observatories Origins Deep Survey South (GOODS-S) field. We
provide estimates of number counts at the three BLAST wavelengths, 250, 350,
and 500 microns; instead of counting sources in flux bins we estimate the
counts at several flux density nodes connected with power-laws. We observe a
generally very steep slope for the counts of about -3.7 at 250 microns and -4.5
at 350 and 500 microns, over the range ~0.02-0.5 Jy, breaking to a shallower
slope below about 0.015 Jy at all three wavelengths. We also describe how to
estimate the uncertainties and correlations in this method so that the results
can be used for model-fitting. This method should be well-suited for analysis
of data from the Herschel satellite.Comment: Accepted for publication in the Astrophysical Journal; see associated
data and other papers at http://blastexperiment.info
BLAST: The Mass Function, Lifetimes, and Properties of Intermediate Mass Cores from a 50 Square Degree Submillimeter Galactic Survey in Vela (l = ~265)
We present first results from an unbiased 50 deg^2 submillimeter Galactic
survey at 250, 350, and 500 micron from the 2006 flight of the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST). The map has resolution ranging
from 36 arcsec to 60 arcsec in the three submillimeter bands spanning the
thermal emission peak of cold starless cores. We determine the temperature,
luminosity, and mass of more than one thousand compact sources in a range of
evolutionary stages and an unbiased statistical characterization of the
population. From comparison with C^(18)O data, we find the dust opacity per gas
mass, kappa r = 0.16 cm^2 g^(-1) at 250 micron, for cold clumps. We find that
2% of the mass of the molecular gas over this diverse region is in cores colder
than 14 K, and that the mass function for these cold cores is consistent with a
power law with index alpha = -3.22 +/- 0.14 over the mass range 14 M_sun < M <
80 M_sun. Additionally, we infer a mass-dependent cold core lifetime of t_c(M)
= 4E6 (M/20 M_sun)^(-0.9) years - longer than what has been found in previous
surveys of either low or high mass cores, and significantly longer than free
fall or likely turbulent decay times. This implies some form of non-thermal
support for cold cores during this early stage of star formation.Comment: Accepted for publication in the Astrophysical Journal. Maps available
at http://blastexperiment.info
A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST
We present the 250, 350, and 500 micron detection of bright submillimeter
emission in the direction of the Bullet Cluster measured by the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is
coincident with an AzTEC 1.1 mm point-source detection at a position close to
the peak lensing magnification produced by the cluster. However, the 250 micron
and 350 micron centroids are elongated and shifted toward the south with a
differential shift between bands that cannot be explained by pointing
uncertainties. We therefore conclude that the BLAST detection is likely
contaminated by emission from foreground galaxies associated with the Bullet
Cluster. The submillimeter redshift estimate based on 250-1100 micron
photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3),
consistent with the infrared color redshift estimation of the most likely IRAC
counterpart. These flux densities indicate an apparent far-infrared luminosity
of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing
of the cluster is removed, the intrinsic far-infrared luminosity of the source
is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared
galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are
available at http://blastexperiment.info
- …
