8,045 research outputs found

    Dynamics of Monetary Policy Uncertainty and the Impact on the Macroeconomy

    Get PDF
    A large literature lauds the benefits of central bank transparency and credibility, but when a central bank like the U.S. Federal Reserve has a dual mandate, is not specific to the extent it targets employment versus price stability, and is not specific to the magnitude interest rates should change in response to these targets, market participants must depend largely on past data to form expectations about monetary policy. We suppose market participants estimate a Taylor-like regression equation to understand the conduct of monetary policy, which likely guides their short-run and long-run expectations. When the Federal Reserve's actions deviate from its historical targets for macroeconomic variables, an environment of greater uncertainty may be the result. We quantify this degree of uncertainty by measuring and aggregating recent deviations of the federal funds rate from econometric forecasts predicted by constant gain learning. We incorporate this measure of uncertainty into a VAR model with ARCH shocks to measure the effect monetary policy uncertainty has on inflation, output growth, unemployment, and the volatility of these variables. We find that a higher degree of uncertainty regarding monetary policy is associated with greater volatility of output growth and unemployment.Uncertainty; learning; volatility; Taylor rule; vector autoregression; ARCH.

    The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring

    Get PDF
    This work was supported by the Science and Technology Facilities Council (Grant No. ST/F007566/1) and we are grateful to them for financial assistance. C.D.M. is also grateful to the Leverhulme Trust for the award of a Research Fellowshippublisher PDF not permitted, withdraw

    A survey of low-velocity collisional features in Saturn's F ring

    Get PDF
    Small (~50km scale), irregular features seen in Cassini images to be emanating from Saturn's F ring have been termed mini-jets by Attree et al. (2012). One particular mini-jet was tracked over half an orbital period, revealing its evolution with time and suggesting a collision with a local moonlet as its origin. In addition to these data we present here a much more detailed analysis of the full catalogue of over 800 F ring mini-jets, examining their distribution, morphology and lifetimes in order to place constraints on the underlying moonlet population. We find mini-jets randomly located in longitude around the ring, with little correlation to the moon Prometheus, and randomly distributed in time, over the full Cassini tour to date. They have a tendency to cluster together, forming complicated `multiple' structures, and have typical lifetimes of ~1d. Repeated observations of some features show significant evolution, including the creation of new mini-jets, implying repeated collisions by the same object. This suggests a population of <~1km radius objects with some internal strength and orbits spread over 100km in semi-major axis relative to the F ring but with the majority within 20km. These objects likely formed in the ring under, and were subsequently scattered onto differing orbits by, the perturbing action of Prometheus. This reinforces the idea of the F ring as a region with a complex balance between collisions, disruption and accretion.Comment: 21 pages, 12 figures. Accepted for publication in Icarus. Supplementary information available at http://www.maths.qmul.ac.uk/~attree/mini-jets

    INTERACTION EFFECTS OF PROMOTION, RESEARCH, AND PRICE SUPPORT PROGRAMS FOR U.S. COTTON

    Get PDF
    Many agricultural commodities have industry-funded generic promotion and/or research ("checkoff") programs designed to improve the economic performance of producers. To determine the effectiveness of these programs, the net benefits to producers attributable to activities funded by the checkoff must be separated from those due to other factors influencing commodity markets. One such factor that is very important in many agricultural commodity markets is the effect of government programs. However, studies evaluating the returns to checkoff programs often do not explicitly discuss the impact of pre-existing distortions caused by federal farm programs. Because the distortions caused by farm programs can be quite large, this omission can lead to seriously biased estimates of the returns to the checkoff programs. In this study, we develop a model that captures the influence of two Federal programs (loan deficiency payments to farmers and subsidies to consuming mills) on the estimated returns to the Cotton Research and Promotion Program. Using an econometrically estimated model of the U.S. cotton market, we find that the program interaction effects have a large impact on checkoff program returns.Agricultural and Food Policy, Crop Production/Industries,

    State detection using coherent Raman repumping and two-color Raman transfers

    Full text link
    We demonstrate state detection based on coherent Raman repumping and a two-color Raman state transfer. The Raman coupling during detection selectively eliminates unwanted dark states in the fluorescence cycle without compromising the immunity of the desired dark state to off-resonant scattering. We demonstrate this technique using 137Ba+^{137}\mathrm{Ba}^+ where a combination of Raman coupling and optical pumping leaves the D3/2D_{3/2} F"=3,mF"=3\ket{F"=3,m_F"=3} metastable state optically dark and immune to off-resonant scattering. All other states are strongly coupled to the upper P1/2P_{1/2} levels. We achieve a single shot state-detection efficiency of 89.6(3)89.6(3)% in a 1ms1\mathrm{ms} integration time, limited almost entirely by technical imperfections. Shelving to the F"=3,mF"=3\ket{F"=3,m_F"=3} state before detection is performed via a two-color Raman transfer with a fidelity of 1.00(3)1.00(3)

    Information sciences experiment system

    Get PDF
    The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed

    Detection of rapid orbital expansion of Saturn’s moon Titan

    Get PDF
    The Saturn satellite system is a complex dynamical system with several gravitational interactions happening between the satellites, the rings and the central body, such as resonances, librations and tides. These intricate dynamics carry information on the formation and evolution of the Saturn and Solar systems

    Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord

    Get PDF
    To restore function after injury to the CNS, axons must be stimulated to extend into denervated territory and, critically, must form functional synapses with appropriate targets. We showed previously that forced overexpression of the transcription factor Sox11 increases axon growth by corticospinal tract (CST) neurons after spinal injury. However, behavioral outcomes were not improved, raising the question of whether the newly sprouted axons are able to form functional synapses. Here we developed an optogenetic strategy, paired with single-unit extracellular recordings, to assess the ability of Sox11-stimulated CST axons to functionally integrate in the circuitry of the cervical spinal cord. Initial time course experiments established the expression and function of virally expressed Channelrhodopsin (ChR2) in CST cell bodies and in axon terminals in cervical spinal cord. Pyramidotomies were performed in adult mice to deprive the left side of the spinal cord of CST input, and the right CST was treated with adeno-associated virus (AAV)–Sox11 or AAV–EBFP control, along with AAV–ChR2. As expected, Sox11 treatment caused robust midline crossing of CST axons into previously denervated left spinal cord. Clear postsynaptic responses resulted from optogenetic activation of CST terminals, demonstrating the ability of Sox11-stimulated axons to form functional synapses. Mapping of the distribution of CST-evoked spinal activity revealed overall similarity between intact and newly innervated spinal tissue. These data demonstrate the formation of functional synapses by Sox11-stimulated CST axons without significant behavioral benefit, suggesting that new synapses may be mistargeted or otherwise impaired in the ability to coordinate functional output. SIGNIFICANCE STATEMENT As continued progress is made in promoting the regeneration of CNS axons, questions of synaptic integration are increasingly prominent. Demonstrating direct synaptic integration by regenerated axons and distinguishing its function from indirect relay circuits and target field plasticity have presented technical challenges. Here we force the overexpression of Sox11 to stimulate the growth of corticospinal tract axons in the cervical spinal cord and then use specific optogenetic activation to assess their ability to directly drive postsynaptic activity in spinal cord neurons. By confirming successful synaptic integration, these data illustrate a novel optogenetic-based strategy to monitor and optimize functional reconnection by newly sprouted axons in the injured CNS
    corecore