86 research outputs found
Ecological limitations to the resilience of coral reefs
The decline of coral reefs has been broadly attributed to human stressors being too strong and pervasive, whereas biological processes that may render coral reefs fragile have been sparsely considered. Here we review several ecological factors that can limit the ability of coral reefs to withstand disturbance. These include: (1) Many species lack the adaptive capacity to cope with the unprecedented disturbances they currently face; (2) human disturbances impact vulnerable life history stages, reducing reproductive output and the supply of recruits essential for recovery; (3) reefs can be vulnerable to the loss of few species, as niche specialization or temporal and spatial segregation makes each species unique (i.e., narrow ecological redundancy); in addition, many foundation species have similar sensitivity to disturbances, suggesting that entire functions can be lost to single disturbances; and (4) feedback loops and extinction vortices may stabilize degraded states or accelerate collapses even if stressors are removed. This review suggests that the degradation of coral reefs is due to not only the severity of human stressors but also the “fragility” of coral reefs. As such, appropriate governance is essential to manage stressors while being inclusive of ecological process and human uses across transnational scales. This is a considerable but necessary upgrade in current management if the integrity, and delivery of goods and services, of coral reefs is to be preserved
Guiding coral reef futures in the Anthropocene
Anthropogenic changes to the Earth now rival those caused by the forces of nature and have shepherded us into a new planetary epoch – the Anthropocene. Such changes include profound and often unexpected alterations to coral reef ecosystems and the services they provide to human societies. Ensuring that reefs and their services endure during the Anthropocene will require that key drivers of coral reef change – fishing, water quality, and anthropogenic climate change – stay within acceptable levels or “safe operating spaces”. The capacity to remain within these safe boundaries hinges on understanding the local, but also the increasingly global and cross-scale, socioeconomic causes of these human drivers of change. Consequently, local and regional management efforts that are successful in the short term may ultimately fail if current decision making and institution-building around coral reef systems remains fragmented, poorly coordinated, and unable to keep pace with the escalating speed of social, technological, and ecological change
Parsing human and biophysical drivers of coral reef regimes
Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems. © 2019 The Author(s
Using GANs for Sharing Networked Time Series Data: Challenges, Initial Promise, and Open Questions
Limited data access is a longstanding barrier to data-driven research and
development in the networked systems community. In this work, we explore if and
how generative adversarial networks (GANs) can be used to incentivize data
sharing by enabling a generic framework for sharing synthetic datasets with
minimal expert knowledge. As a specific target, our focus in this paper is on
time series datasets with metadata (e.g., packet loss rate measurements with
corresponding ISPs). We identify key challenges of existing GAN approaches for
such workloads with respect to fidelity (e.g., long-term dependencies, complex
multidimensional relationships, mode collapse) and privacy (i.e., existing
guarantees are poorly understood and can sacrifice fidelity). To improve
fidelity, we design a custom workflow called DoppelGANger (DG) and demonstrate
that across diverse real-world datasets (e.g., bandwidth measurements, cluster
requests, web sessions) and use cases (e.g., structural characterization,
predictive modeling, algorithm comparison), DG achieves up to 43% better
fidelity than baseline models. Although we do not resolve the privacy problem
in this work, we identify fundamental challenges with both classical notions of
privacy and recent advances to improve the privacy properties of GANs, and
suggest a potential roadmap for addressing these challenges. By shedding light
on the promise and challenges, we hope our work can rekindle the conversation
on workflows for data sharing.Comment: Published in IMC 2020. 20 pages, 26 figure
Measuring nasal bacterial load and its association with otitis media
BACKGROUND: Nasal colonisation with otitis media (OM) pathogens, particularly Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis, is a precursor to the onset of OM. Many children experience asymptomatic nasal carriage of these pathogens whereas others will progress to otitis media with effusion (OME) or suppurative OM. We observed a disparity in the prevalence of suppurative OM between Aboriginal children living in remote communities and non-Aboriginal children attending child-care centres; up to 60% and <1%, respectively. This could not be explained by the less dramatic difference in rates of carriage of respiratory bacterial pathogens (80% vs 50%, respectively). In this study, we measured nasal bacterial load to help explain the different propensity for suppurative OM in these two populations. METHODS: Quantitative measures (colony counts and real-time quantitative PCR) of the respiratory pathogens S. pneumoniae, H. influenzae and M. catarrhalis, and total bacterial load were analysed in nasal swabs from Aboriginal children from remote communities, and non-Aboriginal children attending urban child-care centres. RESULTS: In both populations nearly all swabs were positive for at least one of these respiratory pathogens. Using either quantification method, positive correlations between bacterial load and ear state (no OM, OME, or suppurative OM) were observed. This relationship held for single and combined bacterial respiratory pathogens, total bacterial load, and the proportion of respiratory pathogens to total bacterial load. Comparison of Aboriginal and non-Aboriginal children, all with a diagnosis of OME, demonstrated significantly higher loads of S. pneumoniae and M. catarrhalis in the Aboriginal group. The increased bacterial load despite similar clinical condition may predict persistence of middle ear effusions and progression to suppurative OM in the Aboriginal population. Our data also demonstrated the presence of PCR-detectable non-cultivable respiratory pathogens in 36% of nasal swabs. This may have implications for the pathogenesis of OM including persistence of infection despite aggressive therapies. CONCLUSION: Nasal bacterial load was significantly higher among Aboriginal children and may explain their increased risk of suppurative OM. It was also positively correlated with ear state. We believe that a reduction in bacterial load in high-risk populations may be required before dramatic reductions in OM can be achieved
A Ring-Like Accretion Structure in M87 Connecting Its Black Hole and Jet
The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4+0.5−1.1 Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow
A ring-like accretion structure in M87 connecting its black hole and jet
The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow
A ring-like accretion structure in M87 connecting its black hole and jet
The nearby radio galaxy M87 is a prime target for studying black hole
accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87
in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was
interpreted as gravitationally lensed emission around a central black hole^3.
Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm,
showing that the compact radio core is spatially resolved. High-resolution
imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in
diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at
3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring
indicates a substantial contribution from the accretion flow with absorption
effects in addition to the gravitationally lensed ring-like emission. The
images show that the edge-brightened jet connects to the accretion flow of the
black hole. Close to the black hole, the emission profile of the jet-launching
region is wider than the expected profile of a black-hole-driven jet,
suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper
published in Natur
The persistent shadow of the supermassive black hole of M 87 : I. Observations, calibration, imaging, and analysis
In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls
- …
