212 research outputs found

    Intervention Research, Establishing Fidelity of the Independent Variable in Nursing Clinical Trials

    Full text link
    Background: Internal validity of a randomized clinical trial of a nursing intervention is dependent on intervention fidelity. Although several methods have been developed, evaluating audio or audiovisual tapes for prescribed and proscribed interventionist behaviors is considered the gold standard test of treatment fidelity. This approach requires development of a psychometrically sound instrument to meaningfully categorize and quantify interventionist behaviors. b Objective: To outline critical steps necessary to develop a treatment fidelity instrument. b Methods: A comprehensive literature review was conducted to determine procedures used by other researchers. The literature review produced five quantitative studies of treatment fidelity, all in the field of psychotherapy, and two replication studies. A synthesis of methodologies across studies combined with researchers’ experiences resulted in identification of the steps necessary to develop a treatment fidelity measure. b Results: Seven sequential steps were identified as essential to the development of a valid and reliable measure of treatment fidelity. These steps include (a) identification of the essential elements of the experimental and control treatment modalities; (b) construction of scale items; (c) development of item scaling; (d) identification of the units for coding; (e) item testing and revision; (f) specification of rater qualifications and development of rater training program; and (g) development and completion of pilot testing to test psychometric properties. Development of the Possibilities Project Psychotherapy Coding Questionnaire is described as an illustration of the seven-step process. b Discussion: The results show the essential steps that are unique to the development of treatment fidelity measures and show the feasibility of using these steps to construct a psychometrically sound treatment-specific fidelity measure. b Key Words: internal validity & intervention fidelity & randomized clinical trialshttp://deepblue.lib.umich.edu/bitstream/2027.42/65122/2/Stein Fidelity.pd

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    ITGB5 and AGFG1 variants are associated with severity of airway responsiveness

    Get PDF
    Background: Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity. Methods: A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects. Results: The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1. Conclusions: Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings

    Genetic variants affecting cross-sectional lung function in adults show little or no effect on longitudinal lung function decline

    Get PDF
    Background: Genome-wide association studies have identified numerous genetic regions that influence cross-sectional lung function. Longitudinal decline in lung function also includes a heritable component but the genetic determinants have yet to be defined. Objectives: We aimed to determine whether regions associated with cross-sectional lung function were also associated with longitudinal decline and to seek novel variants which influence decline. Methods: We analysed genome-wide data from 4167 individuals from the Busselton Health Study cohort, who had undergone spirometry (12 695 observations across eight time points). A mixed model was fitted and weighted risk scores were calculated for the joint effect of 26 known regions on baseline and longitudinal changes in FEV1 and FEV1/FVC. Potential additional regions of interest were identified and followed up in two independent cohorts. Results: The 26 regions previously associated with cross-sectional lung function jointly showed a strong effect on baseline lung function (p=4.44×10−16 for FEV1/FVC) but no effect on longitudinal decline (p=0.160 for FEV1/FVC). This was replicated in an independent cohort. 39 additional regions of interest (48 variants) were identified; these associations were not replicated in two further cohorts. Conclusions: Previously identified genetic variants jointly have a strong effect on cross-sectional lung function in adults but little or no effect on the rate of decline of lung function. It is possible that they influence COPD risk through lung development. Although no genetic variants have yet been associated with lung function decline at stringent genome-wide significance, longitudinal change in lung function is heritable suggesting that there is scope for future discoveries

    The Pharmacogenomics of Inhaled Corticosteroids and Lung Function Decline in COPD

    Get PDF
    Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet with variable outcomes and adverse reactions which may be genetically determined. The primary aim of the study was to identify the genetic determinants for FEV1 changes related to ICS therapy. In the Lung Health Study 2 (LHS-2), 1116 COPD patients were randomised to the ICS, triamcinolone acetonide (n=559), or placebo (n=557) with spirometry performed every 6 months for 3 years. We performed a pharmacogenomic genome-wide association study (GWAS) for the genotype-by-ICS treatment effect on 3 years of forced expiratory volume in 1 s (FEV1) changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo. A total of five loci showed genotype-by-ICS interaction at p&lt;5×10-6; of these, SNP rs111720447 on chromosome 7 was replicated (discovery p=4.8×10-6, replication p=5.9×10-5) with the same direction of interaction effect. ENCODE data revealed that in glucocorticoid treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV1 decline in patients taking ICS (C allele beta=56.35 mL·year-1, 95% confidence interval (CI)=29.96, 82.76 mL·yr-1) and also in patients who were assigned to placebo, though the relationship was weaker and in the opposite direction than that in the ICS group (C allele beta=-27.57 mL·year-1, 95% CI=-53.27, -1.87 mL·yr-1). The study uncovered genetic factors associated with FEV1 changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.</p

    Novel Ancestry-Specific Primary Open-Angle Glaucoma Loci and Shared Biology With Vascular Mechanisms and Cell Proliferation

    Get PDF
    Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis

    Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease

    Get PDF
    RATIONALE: Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD). METHODS: Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV(1) % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluorescence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization. RESULTS: Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid. CONCLUSIONS: Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD

    Polygenic risk score for type 2 diabetes shows context-dependent effects across populations

    Get PDF
    Polygenic risk scores hold prognostic value for identifying individuals at higher risk of type 2 diabetes. However, further characterization is needed to understand the generalizability of type 2 diabetes polygenic risk scores in diverse populations across various contexts. We systematically characterize a multi-ancestry type 2 diabetes polygenic risk score among 244,637 cases and 637,891 controls across diverse populations from the Population Architecture Genomics and Epidemiology Study and 13 additional biobanks and cohorts. Polygenic risk score performance is context dependent, with better performance in those who are younger, male, without hypertension, and not obese or overweight. Additionally, the polygenic risk score is associated with various diabetes-related cardiometabolic traits and type 2 diabetes complications, suggesting its utility for stratifying risk of complications and identifying shared genetic architecture between type 2 diabetes and other diseases. These findings highlight the need to account for context when evaluating polygenic risk score as a tool for type 2 diabetes risk prognostication and the potentially generalizable associations of type 2 diabetes polygenic risk score with diabetes-related traits, despite differential performance in type 2 diabetes prediction across diverse populations. Our study provides a comprehensive resource to characterize a type 2 diabetes polygenic risk score.</p

    Inherited causes of clonal haematopoiesis in 97,691 whole genomes

    Get PDF
    Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2–4 and coronary heart disease5—this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues

    Author Correction: Inherited causes of clonal haematopoiesis in 97,691 whole genomes

    Get PDF
    A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03280-1
    corecore