264 research outputs found

    Incorporating project uncertainty in novel environmental biotechnologies: illustrated using phytoremediation

    Get PDF
    "Pollution of the environment by metals and organic contaminants is an intractable global problem, with cleanup costs running into billions of dollars using current engineering technologies. The availability of alternative, cheap and effective technologies would significantly improve the prospects of cleaning-up metal contaminated sites. Phytoremediation has been proposed as an economical and ‘green' method of exploiting plants to extract or degrade the contaminants in the soil. To date, the majority of phytoremediation efforts have been directed at leaping the biological, biochemical and agronomic hurdles to deliver a working technology, with scant attention to the economic outlook other than simple estimates of the cost advantages of phytoremediation over other techniques. In this paper we use a deterministic actuarial model to show that uncertainty in project success (the possibility that full clean up may not be realized) may significantly increase the perceived costs of remediation works for decision-makers." Authors' Abstractbiotechnology, Soil contaminants, Environmental remediation Economic aspects, Industrial crop technologies,

    Developing Carbon Quantum Dots as Multimodal Contrast Agents

    Get PDF

    Environmental Cost vs. Health Benefit of Radioisotope Usage in Medicine

    Get PDF
    This module is developed for implementation in a class that discusses the use of radioisotopes in a biomedical setting. The inspiration is a class I teach (Advanced Biomedical Instrumentation), which covers the use of radioisotopes as tracers in biomedical imaging (scintigraphy, SPECT, PET, etc.). The goal of the module is to go further in depth regarding the environmental impact of the use of radioisotopes (from their generation to their disposal—keeping track of any radioactive byproducts), and compare that to the potential for benefits in the quality and/or quantity of a patient’s life (does using the radioisotopes allow patients to live longer, fuller lives).https://rdw.rowan.edu/oer/1016/thumbnail.jp

    The Lost Histories of the Shetayet of Sokar: Contextualizing the Osiris Shaft at Rosetau (Giza) in Archaeological History

    Get PDF
    The Osiris Shaft is one of many archaeological signatures associated with Egypt’s Giza Plateau, the most well-known of which are the Great Pyramids. However, the role(s) the Osiris Shaft feature played in the religious and daily practices of ancient Egyptians remain(s) unknown. This research seeks to contextualize the Osiris Shaft in Egyptian history to learn more about this feature’s story. In order to achieve this goal, this thesis examines funerary deities associated with Memphis theology and explores archaeological investigations related to the Osiris Shaft, including the work of Dr. Zahi Hawass and investigations by the Giza Mapping Project. Thanks to modern technology, archaeological discoveries in Egypt are advancing at an exponential rate, and opportunities to solve some of the mysteries associated with the Osiris Shaft (e.g., its original date of construction) are now emerging. After analyzing existing archaeological evidence in tandem with the evolution and transformation of funerary deities leading up to/synonymous with Osiris, the Osiris Shaft may represent the successor of the Shetayet of Sokar

    Using High-Powered, Frequency-Narrowed Lasers For Rb/129Xe and Cs/129Xe Spin-Exchange Optical Pumping To Achieve Improved Production of Highly Spin-Polarized Xenon For Use In Magnetic Resonance Applications

    Get PDF
    Nuclear magnetic resonance (NMR) spectroscopy has been extensively used to investigate numerous systems of interest, ranging from collections of molecules to living organisms. However, NMR suffers from one key drawback: an inherent lack of detection sensitivity, as compared to other common forms of spectroscopy. This is due to the minute nuclear magnetic moments and low nuclear spin polarization levels at thermal equilibrium (~10-5 to 10-6), and thus necessitates the use of relatively large sample volumes. One way to overcome this low detection sensitivity is to introduce a species with highly non-equilibrium nuclear spin polarization, such as `hyperpolarized\u27 xenon-129. Hyperpolarized xenon can either be used as its own chemical sensor (due to its exquisitely sensitive chemical shift range), or the non-equilibrium polarization may be transferred from xenon to another molecule of interest (such as a protein or inclusion complex). Hyperpolarized xenon is produced through a process known as spin-exchange optical pumping (SEOP), where the angular momentum from resonant, circularly-polarized light is transferred to the electronic spins of an alkali-metal, and is subsequently transferred to the xenon nuclei through gas-phase collisions. While SEOP has been extensively characterized throughout the years, new experimental techniques and emerging technologies have considerably advanced the field in recent years, and may enable a new understanding of the underlying physics of the system. The first five chapters in this dissertation review background information and the principal motivations for this work. Chapter one reviews the basics of NMR, from the various components of the nuclear spin Hamiltonian and different spin-relaxation pathways to the reasons behind the low polarization of nuclear spins at thermal equilibrium and a few alternative methods to `boost\u27 the NMR signal. Chapter two discusses the fundamental aspects of SEOP, including the electronic spin polarization of the alkali-metal, polarization transfer to the xenon nuclei, and different avenues for the spin polarization to be depleted. The third chapter covers the practical considerations of SEOP from the viewpoint of an experimentalist; namely, the experimental differences when using a variety of alkali metals and noble gases, as well as different SEOP apparatuses and experimental parameters. Chapter four details a variety of different light sources that may be used for SEOP; specifically, the use of laser diode arrays (LDAs) are reviewed, including LDAs that have been frequency-narrowed for more efficient light absorption by the alkali metal. The fifth background chapter covers a variety of magnetic resonance applications of hyperpolarized xenon, including molecular biosensors, specific and non-specific binding with proteins, materials studies, and in vivo applications. The sixth chapter is used as an overview of the dissertation research, which is presented in chapters seven through eleven. Chapter seven details the arrangement of the particular SEOP apparatus used in this research, as well as the experimental protocol for producing hyperpolarized xenon. The eighth chapter accounts the implementation and characterization of the first frequency-narrowed LDA used in this research, as well as an equal comparison to a traditional broadband LDA. Chapter nine introduces the use of in situ low-field NMR polarimetry, which was used to distinguish an anomalous dependence of the optimal OP cell temperature on the in-cell xenon density; the low-field set-up is also used to examine the build-up of nuclear spin polarization in the OP cell as it occurs. The tenth chapter covers the use of high power, frequency-narrowed light sources that are spectrally tunable independent of laser power; this allows for the study of changes to the optimal spectral offset as a function of in-cell xenon density, OP cell temperature, and laser power. Xenon polarization build-up curves are also studied to determine if the spectral offset of the laser affects the nuclear spin polarization dynamics within the OP cell. Finally, chapter eleven accounts the use of high power, broadband LDAs to perform SEOP in which cesium is used as the alkali metal; these results demonstrate (for the first time) that the xenon polarization generated by cesium optical pumping can surpass that of rubidium OP under conditions of high laser flux and elevated in-cell xenon densities

    Comparative study of in situ N2 rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

    Get PDF
    Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX

    Laplace-HDC: Understanding the geometry of binary hyperdimensional computing

    Full text link
    This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.Comment: 23 pages, 7 figure

    XeNA: an automated ‘open-source’ 129Xe hyperpolarizer for clinical use

    Get PDF
    Here we provide a full report on the construction, components, and capabilities of our consortium’s “open-source” large-scale (~ 1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization values of ~ 30%–90% have been measured for Xe loadings of ~ 300–1600 Torr. Typical 129Xe polarization build-up and T1 relaxation time constants were ~ 8.5 min and ~ 1.9 h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~ 200 W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to nearly 6 h) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine
    corecore