22 research outputs found

    UNDERSTANDING RHEOLOGY AND TECHNOLOGY OF POLYMER EXTRUSION

    Get PDF
    Polymer basics. Viscosity and unidirectional melt flows. Shear thinning, viscous dissipation, Generalized Newtonian Fluid, power-law. Viscoelasticity, normal stress differences, elongational viscosity, extrudate (die) swell, stress relaxation and relaxation time. Sharkskin, melt fracture, die lip build up (drool). Rheological measurements (melt Index, capillary, Rabinowitsch and Bagley corrections, cone-and-plate, parallel plate, oscillatory, SAOS). Single screw extruders (grooved feed, barrier screws,), die design, flat film extrusion, blown film, co-extrusion, pipe, profile, twin screw extruders (high speed intermeshing corotating, counterrotating), mixing in extruders

    The role of heating and cooling in viscous sintering of pairs of spheres and pairs of cylinders

    Full text link
    Purpose This study aims to develop mathematical models for the determination of the effects of heating or cooling on neck growth in Selective Laser Sintering (SLS) and Fused Filament Fabrication (FFF). Two particle shapes are studied: spherical and cylindrical. Design/methodology/approach The time required for the coalescence (sintering) process is determined by balancing the work of surface tension forces and viscous dissipation. Heating and cooling effects are studied by incorporating temperature dependence of viscosity in an exponential form. Heating by a laser, convective and/or radiative heat transfer is assumed. It is also assumed that there are no temperature gradients within the coalescing molten polymers (lumped parameter heat transfer analysis). Findings The models predict faster sintering with heating and slower with cooling, as expected because of the effect of temperature on viscosity. For the isothermal case of pairs of cylinders, the present model predicts significantly longer time for completion of sintering than a previously developed and frequently cited model by Hopper. Originality/value An isothermal sintering model for two spheres was reworked for two long cylinders, and for the first time it has been compared to other models available in the literature. The mathematical models are capable of predicting neck growth under non-isothermal conditions for both spheres and cylinders. They are useful in assessment of bonding in selective laser sintering and fused deposition fabrication. </jats:sec

    Direct Ink Writing for Electrochemical Device Fabrication: A Review of 3D-Printed Electrodes and Ink Rheology

    No full text
    Three-dimensional printed electrodes seem to overcome many structural and operational limitations compared to ones fabricated with conventional methods. Compared to other 3D printing techniques, direct ink writing (DIW), as a sub-category of extrusion-based 3D printing techniques, allows for easier fabrication, the utilization of various materials, and high flexibility in electrode architectures with low costs. Despite the conveniences in fabrication procedures that are facilitated by DIW, what qualifies an ink as 3D printable has become challenging to discern. Probing rheological ink properties such as viscoelastic moduli and yield stress appears to be a promising approach to determine 3D printability. Yet, issues arise regarding standardization protocols. It is essential for the ink filament to be extruded easily and continuously to maintain dimensional accuracy, even after post-processing methods related to electrode fabrication. Additives frequently present in the inks need to be removed, and this procedure affects the electrical and electrochemical properties of the 3D-printed electrodes. In this context, the aim of the current review was to analyze various energy devices, highlighting the type of inks synthesized and their measured rheological properties. This review fills a gap in the existing literature. Thus, according to the inks that have been formulated, we identified two categories of DIW electrode architectures that have been manufactured: supported and free-standing architectures

    Implementation of Machine Learning in Flat Die Extrusion of Polymers

    No full text
    Achieving a uniform thickness and defect-free production in the flat die extrusion of polymer sheets and films is a major challenge. Dies are designed for one extrusion scenario, for a polymer grade with specified rheological behavior, and for a given throughput rate. The extrusion of different polymer grades and at different flow rates requires trial-and-error procedures. This study investigated the application of machine learning (ML) to provide guidance for the extrusion of sheets and films with a reduced thickness, non-uniformities, and without defects. A dataset of 200 cases was generated using computer simulation software for flat die extrusion. The dataset encompassed variations in die geometry by varying the gap under a restrictor, polymer rheological and thermophysical properties, and processing conditions, including throughput rate and temperatures. The dataset was used to train and evaluate the following three powerful machine learning (ML) algorithms: Random Forest (RF), XGBoost, and Support Vector Regression (SVR). The ML models were trained to predict thickness variations, pressure drops, and the lowest wall shear rate (targets). Using the SHapley Additive exPlanations (SHAP) analysis provided valuable insights into the influence of input features, highlighting the critical roles of polymer rheology, throughput rate, and the gap beneath the restrictor in determining targets. This ML-based methodology has the potential to reduce or even eliminate the use of trial and error procedures

    A viscous sintering model for pore shrinkage in packings of cylinders

    Full text link

    Calendering of thermoplastics: models and computations

    No full text
    Abstract John Vlachopoulos (JV) started his polymer processing career with the process of calendering. In two landmark papers with Kiparissides, C. and Vlachopoulos, J. (1976). Finite element analysis of calendering. Polym. Eng. Sci. 16: 712–719; Kiparissides, C. and Vlachopoulos, J. (1978). A study of viscous dissipation in the calendering of power-law fluids. Polym. Eng. Sci. 18: 210–214 he introduced the Finite Element Method (FEM) to solve the governing equations of mass, momentum, and energy based on the Lubrication Approximation Theory (LAT). This early work was followed by the introduction of wall slip (with Vlachopoulos, J. and Hrymak, A.N. (1980). Calendering poly(vinyl chloride): theory and experiments. Polym. Eng. Sci. 20: 725–731). The first 2-D simulations for calendering PVC were carried out with Mitsoulis, E., Vlachopoulos, J., and Mirza, F.A. (1985). Calendering analysis without the lubrication approximation. Polym. Eng. Sci. 25: 6–18. In the intervening 35 years, other works have emerged, however our understanding has not been drastically improved since JV’s early works. Results have also been obtained for pseudoplastic and viscoplastic fluids using the general Herschel-Bulkley constitutive model. The emphasis was on finding possible differences with LAT regarding the attachment and detachment points of the calendered sheet (hence the domain length), and the extent and shape of yielded/unyielded regions. The results showed that while the former is well predicted by LAT, the latter is grossly overpredicted. More results have been obtained for 3-D simulations, showing intricate patterns in the melt bank. Also, the transient problem has been solved using the ALE-FEM formulation for moving free-boundary problems. The results are compared with the previous simulations for the steady-state and show a good agreement. The transient simulations capture the movement of the upstream and downstream free surfaces, and also provide the attachment and detachment points, which are unknown a priori. Finding these still remains the prevailing challenge in the modeling of the calendering process.</jats:p

    The Role of Calender Gap in Barrel and Screw Wear in Counterrotating Twin Screw Extruders

    No full text
    It has been known in the industrial sector that in closely intermeshing counterrotating twin screw extruders, large separating forces develop in the calender gap, which push the screws towards the barrel wall. The result is significant wear in the region defined by 30°- and 60°-degree angles from the vertical. In the present investigation, pressures were measured around the barrel in extrusion of two rigid PVC resins in a laboratory extruder of 55 mm diameter and the forces on the screw core were determined. Numerical flow simulations were also carried out using the power-law viscosity parameters of the resins. From the experimental results, it was determined that the resultant forces are in the 30 degree angle direction, and from the computer simulations, the angle is between 18° and 25°. It is argued that the resultant force angle will be somewhat larger in large diameter extruders, due to the additional contribution of gravity

    The Role of Calender Gap in Barrel and Screw Wear in Counterrotating Twin Screw Extruders

    No full text
    It has been known in the industrial sector that in closely intermeshing counterrotating twin screw extruders, large separating forces develop in the calender gap, which push the screws towards the barrel wall. The result is significant wear in the region defined by 30°- and 60°-degree angles from the vertical. In the present investigation, pressures were measured around the barrel in extrusion of two rigid PVC resins in a laboratory extruder of 55 mm diameter and the forces on the screw core were determined. Numerical flow simulations were also carried out using the power-law viscosity parameters of the resins. From the experimental results, it was determined that the resultant forces are in the 30 degree angle direction, and from the computer simulations, the angle is between 18° and 25°. It is argued that the resultant force angle will be somewhat larger in large diameter extruders, due to the additional contribution of gravity.</jats:p
    corecore