202 research outputs found
Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals
Mitochondria convert the energy stored in carbohydrate and fat into ATP molecules that power enzymatic reactions within cells, and this process influences cellular calcium signals in several ways. By providing ATP to calcium pumps at the plasma and intracellular membranes, mitochondria power the calcium gradients that drive the release of Ca2+ from stores and the entry of Ca2+ across plasma membrane channels. By taking up and subsequently releasing calcium ions, mitochondria determine the spatiotemporal profile of cellular Ca2+ signals and the activity of Ca2+-regulated proteins, including Ca2+ entry channels that are themselves part of the Ca2+ circuitry. Ca2+ elevations in the mitochondrial matrix, in turn, activate Ca2+-dependent enzymes that boost the respiratory chain, increasing the ability of mitochondria to buffer calcium ions. Mitochondria are able to encode and decode Ca2+ signals because the respiratory chain generates an electrochemical gradient for protons across the inner mitochondrial membrane. This proton motive force (Δp) drives the activity of the ATP synthase and has both an electrical component, the mitochondrial membrane potential (ΔΨ m ), and a chemical component, the mitochondrial proton gradient (ΔpH m ). ΔΨ m contributes about 190mV to Δp and drives the entry of Ca2+ across a recently identified Ca2+-selective channel known as the mitochondrial Ca2+ uniporter. ΔpH m contributes ~30mV to Δp and is usually ignored or considered a minor component of mitochondria respiratory state. However, the mitochondrial proton gradient is an essential component of the chemiosmotic theory formulated by Peter Mitchell in 1961 as ΔpH m sustains the entry of substrates and metabolites required for the activity of the respiratory chain and drives the activity of electroneutral ion exchangers that allow mitochondria to maintain their osmolarity and volume. In this review, we summarize the mechanisms that regulate the mitochondrial proton gradient and discuss how thermodynamic concepts derived from measurements in purified mitochondria can be reconciled with our recent findings that mitochondria have high proton permeability in situ and that ΔpH m decreases during mitochondrial Ca2+ elevation
RB501, RB502, RB503, RB504 and RB505 antibodies recognize the human UNC93B1 protein by ELISA
The recombinant antibodies RB501, RB502, RB503, RB504 and RB505 detect by ELISA the human Protein unc-93 homolog B1fused to a GST protein
Interactions between Electron and Proton Currents in Excised Patches from Human Eosinophils
The NADPH–oxidase is a plasma membrane enzyme complex that enables phagocytes to generate superoxide in order to kill invading pathogens, a critical step in the host defense against infections. The oxidase transfers electrons from cytosolic NADPH to extracellular oxygen, a process that requires concomitant H+ extrusion through depolarization-activated H+ channels. Whether H+ fluxes are mediated by the oxidase itself is controversial, but there is a general agreement that the oxidase and H+ channel are intimately connected. Oxidase activation evokes profound changes in whole-cell H+ current (IH), causing an approximately −40-mV shift in the activation threshold that leads to the appearance of inward IH. To further explore the relationship between the oxidase and proton channel, we performed voltage-clamp experiments on inside-out patches from both resting and phorbol-12-myristate-13-acetate (PMA)-activated human eosinophils. Proton currents from resting cells displayed slow voltage-dependent activation, long-term stability, and were blocked by micromolar internal [Zn2+]. IH from PMA-treated cells activated faster and at lower voltages, enabling sustained H+ influx, but ran down within minutes, regaining the current properties of nonactivated cells. Bath application of NADPH to patches excised from PMA-treated cells evoked electron currents (Ie), which also ran down within minutes and were blocked by diphenylene iodonium (DPI). Run-down of both IH and Ie was delayed, and sometimes prevented, by cytosolic ATP and GTP-γ-S. A good correlation was observed between the amplitude of Ie and both inward and outward IH when a stable driving force for e− was imposed. Combined application of NADPH and DPI reduced the inward IH amplitude, even in the absence of concomitant oxidase activity. The strict correlation between Ie and IH amplitudes and the sensitivity of IH to oxidase-specific agents suggest that the proton channel is either part of the oxidase complex or linked by a membrane-limited mediator
A Novel H+ Conductance in Eosinophils: Unique Characteristics and Absence in Chronic Granulomatous Disease
Efficient mechanisms of H+ ion extrusion are crucial for normal NADPH oxidase function. However, whether the NADPH oxidase—in analogy with mitochondrial cytochromes—has an inherent H+ channel activity remains uncertain: electrophysiological studies did not find altered H+ currents in cells from patients with chronic granulomatous disease (CGD), challenging earlier reports in intact cells. In this study, we describe the presence of two different types of H+ currents in human eosinophils. The “classical” H+ current had properties similar to previously described H+ conductances and was present in CGD cells. In contrast, the “novel” type of H+ current had not been described previously and displayed unique properties: (a) it was absent in cells from gp91- or p47-deficient CGD patients; (b) it was only observed under experimental conditions that allowed NADPH oxidase activation; (c) because of its low threshold of voltage activation, it allowed proton influx and cytosolic acidification; (d) it activated faster and deactivated with slower and distinct kinetics than the classical H+ currents; and (e) it was ∼20-fold more sensitive to Zn2+ and was blocked by the histidine-reactive agent, diethylpyrocarbonate (DEPC). In summary, our results demonstrate that the NADPH oxidase or a closely associated protein provides a novel type of H+ conductance during phagocyte activation. The unique properties of this conductance suggest that its physiological function is not restricted to H+ extrusion and repolarization, but might include depolarization, pH-dependent signal termination, and determination of the phagosomal pH set point
VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification
Neutrophils kill microbes with reactive oxygen species generated by the NADPH oxidase, an enzyme which moves electrons across membranes. Voltage-gated proton channels (voltage-sensing domain only protein [VSOP]/Hv1) are required for high-level superoxide production by phagocytes, but the mechanism of this effect is not established. We show that neutrophils from VSOP/Hv1−/− mice lack proton currents but have normal electron currents, indicating that these cells have a fully functional oxidase that cannot conduct protons. VSOP/Hv1−/− neutrophils had a more acidic cytosol, were more depolarized, and produced less superoxide and hydrogen peroxide than neutrophils from wild-type mice. Hydrogen peroxide production was rescued by providing an artificial conductance with gramicidin. Loss of VSOP/Hv1 also aborted calcium responses to chemoattractants, increased neutrophil spreading, and decreased neutrophil migration. The migration defect was restored by the addition of a calcium ionophore. Our findings indicate that proton channels extrude the acid and compensate the charge generated by the oxidase, thereby sustaining calcium entry signals that control the adhesion and motility of neutrophils. Loss of proton channels thus aborts superoxide production and causes a severe signaling defect in neutrophils
Functional specialization of calreticulin domains
Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions
Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins
The recent improvement in the design and use of genetically encoded fluorescent Ca2+ indicators should foster major progress in three aspects of Ca2+ signaling. At the subcellular level, ratiometric probes with expanded dynamics are now available to measure accurately the local Ca2+ changes occurring within specific cell compartments. These tools will allow to determine precisely the role of organelles and of cellular microdomains in Ca2+ handling. At the cellular level, the permanent labeling offered by the genetic probes enables large-scale, long-term Ca2+ measurements with robotic multiplexing technologies such as fluorescence plate readers or automated microscopes. This opens the way to large-scale pharmacological or genetic screens based on organelle-specific functional assays. At the whole animal level, probes with improved dynamics and reduced interference with endogenous proteins will allow to generate transgenic animals bearing Ca2+ sensitive indicators in specific cells and tissues. With this approach, Ca2+ signals can be recorded in neurons, heart, and pancreas of live animals during physiological and pathological stimulations. In this chapter, I will review the progress made in the design and use of genetic Ca2+ indicators, and discuss how these new tools provide an opportunity to challenge several unsolved questions in Ca2+ signaling
- …
