203 research outputs found

    Cloud thermodynamic phase inferred from merged POLDER and MODIS data

    No full text
    International audienceThe global spatial and diurnal distribution of cloud properties is a key issue for understanding the hydrological cycle, and critical for advancing efforts to improve numerical weather models and general circulation models. Satellite data provides the best way of gaining insight into global cloud properties. In particular, the determination of cloud thermodynamic phase is a critical first step in the process of inferring cloud optical and microphysical properties from satellite measurements. It is important that cloud phase be derived together with an estimate of the confidence of this determination, so that this information can be included with subsequent retrievals (optical thickness, effective particle radius, and ice/liquid water content). In this study, we combine three different and well documented approaches for inferring cloud phase into a single algorithm. The algorithm is applied to data obtained by the MODIS (MODerate resolution Imaging Spectroradiometer) and POLDER3 (Polarization and Directionality of the Earth Reflectance) instruments. It is shown that this synergistic algorithm can be used routinely to derive cloud phase along with an index that helps to discriminate ambiguous phase from confident phase cases. The resulting product provides a semi-continuous confidence index ranging from confident liquid to confident ice instead of the usual discrete classification of liquid phase, ice phase, mixed phase (potential combination of ice and liquid particles), or simply unknown phase clouds. This approach is expected to be useful for cloud assimilation and modeling efforts while providing more insight into the global cloud properties derived from satellite data

    AdipoRon enhances healthspan in middle‐aged obese mice: striking alleviation of myosteatosis and muscle degenerative markers

    Get PDF
    BackgroundObesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes toage-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolicsyndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) andmyosteatosis, two severe burdens of ageing and metabolic diseases. Adiponectin (ApN) is a hormone, mainly secretedby adipocytes, which exerts insulin-sensitizing and fat-burning properties in several tissues including the liver and themuscle. Its overexpression also increases lifespan in mice. In this study, we investigated whether an ApN receptor ag-onist, AdipoRon (AR), could slow muscle dysfunction, myosteatosis and degenerative muscle markers in middle-agedobese mice. The effects on myosteatosis were compared with those on NAFLD.MethodsThree groups of mice were studied up to 62 weeks of age: One group received normal diet (ND), another,high-fat diet (HFD); and the last, HFD combined with AR given orally for almost 1 year. An additional group of youngmice under an ND was used. Treadmill tests and micro-computed tomography (CT) were carried out in vivo. Histolog-ical, biochemical and molecular analyses were performed on tissues ex vivo. Bodipy staining was used to assessintramyocellular lipid (IMCL) and lipid droplet morphology.ResultsAR did not markedly alter diet-induced obesity. Yet, this treatment rescued exercise endurance in obese mice(up to 2.4-fold,P<0.05), an event that preceded the improvement of insulin sensitivity. Dorsal muscles and liver den-sities, measured by CT, were reduced in obese mice ( 42% and 109%, respectively,P<0.0001), suggesting fatty in-filtration. This reduction tended to be attenuated by AR. Accordingly, AR significantly mitigated steatosis and cellularballooning at liver histology, thereby decreasing the NALFD activity score ( 30%,P<0.05). AR also strikingly reversedIMCL accumulation either due to ageing in oxidativefibres (types 1/2a, soleus) or to HFD in glycolytic ones (types2x/2b, extensor digitorum longus) ( 50% to 85%,P<0.05 or less). Size of subsarcolemmal lipid droplets, knownto be associated with adverse metabolic outcomes, was reduced as well. Alleviation of myosteatosis resulted from im-proved mitochondrial function and lipid oxidation. Meanwhile, AR halved aged-related accumulation of dysfunctionalproteins identified as tubular aggregates and cylindrical spirals by electron microscopy (P<0.05).ConclusionsLong-term AdipoRon treatment promotes‘healthy ageing’in obese middle-aged mice by enhancing en-durance and protecting skeletal muscle and liver against the adverse metabolic and degenerative effects of ageingand caloric excess.University College de Londres (UCL) de Reino Unido - FSR 2017Société Francophone du Diabète de Francia/Roche Diabetes Care de España 2020National Fund for Scientific Research de Bélgica - FNRS 35275437, 201

    Inhibiting the inflammasome with MCC950 counteracts muscle pyroptosis and improves Duchenne muscular dystrophy

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) is the most common inherited human myopathy. Typically, the secondary process involving severe inflammation and necrosis exacerbate disease progression. Previously, we reported that the NLRP3 inflammasome complex plays a crucial role in this disorder. Moreover, pyroptosis, a form of programmed necrotic cell death, is triggered by NLRP3 via gasdermin D (GSDMD). So far, pyroptosis has never been described either in healthy muscle or in dystrophic muscle. The aim of this study was to unravel the role of NLRP3 inflammasome in DMD and explore a potentially promising treatment with MCC950 that selectively inhibits NLRP3. Methods: Four‐week‐old mdx mice (n=6 per group) were orally treated for 2 months with MCC950 (mdx‐T), a highly potent, specific, small-molecule inhibitor of NLRP3, and compared with untreated (mdx) and wild-type (WT) mice. In vivo functional tests were carried out to measure the global force and endurance of mice. Ex vivo biochemical and molecular analyses were performed to evaluate the pathophysiology of the skeletal muscle. Finally, in vitro tests were conducted on primary cultures of DMD human myotubes. Results: After MCC950 treatment, mdx mice exhibited a significant reduction of inflammation, macrophage infiltration and oxidative stress (-20 to -65%, P<0.05 vs untreated mdx). Mdx‐T mice displayed considerably less myonecrosis (-54%, P<0.05 vs mdx) and fibrosis (-75%, P<0.01 vs mdx). Moreover, a more mature myofibre phenotype, characterized by larger-sized fibres and higher expression of mature myosin heavy chains 1 and 7 was observed. Mdx-T also exhibited enhanced force and resistance to fatigue (+20 to 60%, P<0.05 or less). These beneficial effects resulted from MCC950 inhibition of both active caspase-1 (-46%, P=0.075) and cleaved gasdermin D (N-GSDMD) (-42% in medium-sized-fibres, P<0.001). Finally, the anti-inflammatory action and the anti-pyroptotic effect of MCC950 were also recapitulated in DMD human myotubes. Conclusion: Specific inhibition of the NLRP3 inflammasome can significantly attenuate the dystrophic phenotype. A novel finding of this study is the overactivation of GSDMD, which is hampered by MCC950. This ultimately leads to less inflammation and pyroptosis and to a better muscle maturation and function. Targeting NLRP3 might lead to an effective therapeutic approach for a better management of DMD.Fund for Scientific Research de Bélgica (FNRS)-PDR/T.0026.2

    NMR structure and ion channel activity of the p7 protein from hepatitis C virus

    Get PDF
    The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by 1H and 13C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism.Instituto de Física La Plat

    Enteral Feeding in Patients With Open Abdomen and Negative Pressure Therapy: A Propensity Score Analysis

    Get PDF
    IntroductionIn critically ill surgical patients treated with open abdomen and negative pressure therapy (OA/NPT), the association between nutritional support and clinical outcome is still controversial. The main objective of this study was to assess the effect of enteral nutritional support during the acute phase (i.e., the first 7 days) on clinical outcome (abdominal wall closure rate or fistula formation) in critically ill surgical patients treated by OA/NPT.MethodsOver a 5-year period, every critically ill patient who underwent nutritional support while treated by OA/NPT was retrospectively included. The main study outcome was a composite criterion, defined as delayed abdominal closure ≥8 days and/or secondary abdominal complications (secondary anastomotic leak, intra-abdominal abscess and fascial dehiscence). Inverse probability of treatment weight (IPTW) was derived from a propensity score model. Multivariable logistic regression was used to test the association between clinical outcome and different modalities of nutritional support (enteral nutrition vs. nil per os during the first week after OA/NPT, early vs. late enteral nutrition, normal vs. low caloric/protein intake).ResultsOver the study period, 171 patients were included and 50% underwent delayed abdominal closure and/or secondary abdominal complications. The rate of delayed abdominal closure or secondary abdominal complications was significantly lower in patients who received enteral nutrition versus those who remained nil per os (40% vs. 61%, p = 0.007), with an IPTW-adjusted OR of poor clinical outcome of 0.49 [95%CI: 0.25–0.98]. There was no other statistical association between modalities of nutritional support and the study outcome.ConclusionIn critically ill patients with OA/NPT, the use of enteral feeding within 7 days after surgery was associated with better clinical outcome. Further studies are mandatory to better define the adequate timing for enteral feeding, the energy needs and the protein requirements during the acute phase after OA/NPT

    Cloud thermodynamic phase inferred from merged POLDER and MODIS data

    Get PDF
    The global spatial and diurnal distribution of cloud properties is a key issue for understanding the hydrological cycle, and critical for advancing efforts to improve numerical weather models and general circulation models. Satellite data provides the best way of gaining insight into global cloud properties. In particular, the determination of cloud thermodynamic phase is a critical first step in the process of inferring cloud optical and microphysical properties from satellite measurements. It is important that cloud phase be derived together with an estimate of the confidence of this determination, so that this information can be included with subsequent retrievals (optical thickness, effective particle radius, and ice/liquid water content). In this study, we combine three different and well documented approaches for inferring cloud phase into a single algorithm. The algorithm is applied to data obtained by the MODIS (MODerate resolution Imaging Spectroradiometer) and POLDER3 (Polarization and Directionality of the Earth Reflectance) instruments. It is shown that this synergistic algorithm can be used routinely to derive cloud phase along with an index that helps to discriminate ambiguous phase from confident phase cases. The resulting product provides a semi-continuous index ranging from confident liquid to confident ice instead of the usual discrete classification of liquid phase, ice phase, mixed phase (potential combination of ice and liquid particles), or simply unknown phase clouds. The index value provides simultaneously information on the phase and the associated confidence. This approach is expected to be useful for cloud assimilation and modeling efforts while providing more insight into the global cloud properties derived from satellite data

    NMR structure and ion channel activity of the p7 protein from hepatitis C virus

    Get PDF
    The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by 1H and 13C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism.Instituto de Física La Plat

    Glucose deprivation and identification of TXNIP as an immunometabolic modulator of T cell activation in cancer

    Get PDF
    BackgroundThe ability of immune cells to rapidly respond to pathogens or malignant cells is tightly linked to metabolic pathways. In cancer, the tumor microenvironment (TME) represents a complex system with a strong metabolism stress, in part due to glucose shortage, which limits proper T cell activation, differentiation and functions preventing anti-tumor immunity.MethodsIn this study, we evaluated T cell immune reactivity in glucose-restricted mixed lymphocyte reaction (MLR), using a comprehensive profiling of soluble factors, multiparametric flow cytometry and single cell RNA sequencing (scRNA-seq).ResultsWe determined that glucose restriction potentiates anti-PD-1 immune responses and identified thioredoxin-interacting protein (TXNIP), a negative regulator of glucose uptake, as a potential immunometabolic modulator of T cell activation. We confirmed TXNIP downregulation in tumor infiltrating T cells in cancer patients. We next investigated the implication of TXNIP in modulating immune effector functions in primary human T cells and showed that TXNIP depletion increased IFN-γ secretion and tumor cell killing.ConclusionsTXNIP is at the interface between immunometabolism and T cell activation and could represent a potential target for immuno-oncology treatments
    corecore