21 research outputs found
Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)
<p>Abstract</p> <p>Background</p> <p>The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, <it>i.e</it>. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (<it>Cichorium intybus </it>L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae.</p> <p>Findings</p> <p>Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from <it>Hin</it>dIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and <it>S</it><sub>2</sub><it>S</it><sub>2 </sub>for the <it>S</it>-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and <it>S</it><sub>1</sub><it>S</it><sub>4</sub>. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers.</p> <p>Conclusions</p> <p>This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the <it>S</it>-locus in this Asteraceae species.</p
Contrasted Patterns of Molecular Evolution in Dominant and Recessive Self-Incompatibility Haplotypes in Arabidopsis
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae
Agrobacterium-mediated transformation of Zymoseptoria tritici v1
This protocol describes the procedure for transforming plasmids into the plant pathogenic fungus Zymoseptoria tritici by Agrobacterium tumefaciens-mediated transformation. It is based on the protocol first described by Zwiers and De Waard (2001; doi: 10.1007/s002940100216) and utilises A.tumefaciens ternary vectors developed by Sidhu et al. (2015a; doi: 10.1016/j.fgb.2015.04.015), Sidhu et al. (2015b; doi: 10.1016/j.fgb.2015.03.021) and Kilaru et al. (2015; doi: 10.1016/j.fgb.2015.03.018). Section 1 details the recipes for media used in the protocol Section 2 describes how to make competent A. tumefaciens cells Section 3 details the process of transforming A. tumefaciens competent cells with plasmid vectors Section 4 describes the process of A. tumefaciens-mediated Z. tritici transformation </p
Two-speed genome expansion drives the evolution of pathogenicity in animal fungal pathogens
AbstractThe origins of virulence in amphibian-infecting chytrids Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are largely unknown. Here, we use deep nanopore sequencing of Bsal and comparative genomics against 21 high-quality genome assemblies that span the fungal Chytridiomycota. Bsal has the most repeat-rich genome, comprising 40.9% repetitive elements, which has expanded to more than 3X the length of its conspecific Bd. M36 metalloprotease virulence factors are highly expanded in Bsal and 53% of the 177 unique genes are flanked by transposable elements, suggesting repeat-driven expansion. The largest M36 sub-family are mostly (84%) flanked upstream by a novel LINE element, a repeat superfamily implicated with gene copy number variations. We find that Bsal has a highly compartmentalized genome architecture, with virulence factors enriched in gene-sparse/repeat-rich compartments, while core conserved genes occur in gene-rich/repeat-poor compartments. This is a hallmark of two-speed genome evolution. Furthermore, genes with signatures of positive selection in Bd are enriched in repeat-rich regions, suggesting they are a cradle for chytrid pathogenicity evolution, and Bd also has a two-speed genome. This is the first evidence of two-speed genomes in any animal pathogen, and sheds new light on the evolution of fungal pathogens of vertebrates driving global declines and extinctions.</jats:p
Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome
Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.Science, Faculty ofNon UBCBotany, Department ofReviewedFacult
Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence
Geophysical Journal International, v. 164, n. 3, p. 543-550, 2006. http://dx.doi.org/10.1111/j.1365-246X.2006.02863.xInternational audienc
