68 research outputs found
CMB Polarization Systematics Due to Beam Asymmetry: Impact on Inflationary Science
CMB polarization provides a unique window into cosmological inflation; the
amplitude of the B-mode polarization from last scattering is uniquely sensitive
to the energetics of inflation. However, numerous systematic effects arising
from optical imperfections can contaminate the observed B-mode power spectrum.
In particular, systematic effects due to the coupling of the underlying
temperature and polarization fields with elliptical or otherwise asymmetric
beams yield spurious systematic signals. This paper presents a non-perturbative
analytic calculation of some of these signals. We show that results previously
derived in real space can be generalized, formally, by including infinitely
many higher-order corrections to the leading order effects. These corrections
can be summed and represented as analytic functions when a fully Fourier-space
approach is adopted from the outset. The formalism and results presented in
this paper were created to determine the susceptibility of CMB polarization
probes of the primary gravitational wave signal but can be easily extended to
the analysis of gravitational lensing of the CMB.Comment: 14 pages, 11 figures, 6 tables. Minor corrections included to match
published versio
CMB Polarization Systematics Due to Beam Asymmetry: Impact on Inflationary Science
CMB polarization provides a unique window into cosmological inflation; the
amplitude of the B-mode polarization from last scattering is uniquely sensitive
to the energetics of inflation. However, numerous systematic effects arising
from optical imperfections can contaminate the observed B-mode power spectrum.
In particular, systematic effects due to the coupling of the underlying
temperature and polarization fields with elliptical or otherwise asymmetric
beams yield spurious systematic signals. This paper presents a non-perturbative
analytic calculation of some of these signals. We show that results previously
derived in real space can be generalized, formally, by including infinitely
many higher-order corrections to the leading order effects. These corrections
can be summed and represented as analytic functions when a fully Fourier-space
approach is adopted from the outset. The formalism and results presented in
this paper were created to determine the susceptibility of CMB polarization
probes of the primary gravitational wave signal but can be easily extended to
the analysis of gravitational lensing of the CMB.Comment: 14 pages, 11 figures, 6 tables. Minor corrections included to match
published versio
CMB polarimetry with BICEP: instrument characterization, calibration, and performance
BICEP is a ground-based millimeter-wave bolometric array designed to target
the primordial gravity wave signature on the polarization of the cosmic
microwave background (CMB) at degree angular scales. Currently in its third
year of operation at the South Pole, BICEP is measuring the CMB polarization
with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2%
of the sky, as well as deriving independent constraints on the diffuse
polarized foregrounds with select observations on and off the Galactic plane.
Instrument calibrations are discussed in the context of rigorous control of
systematic errors, and the performance during the first two years of the
experiment is reviewed.Comment: 12 pages, 15 figures, updated version of a paper accepted for
Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV,
Proceedings of SPIE, 7020, 200
Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP
We present a method of cross-calibrating the polarization angle of a
polarimeter using BICEP Galactic observations. \bicep\ was a ground based
experiment using an array of 49 pairs of polarization sensitive bolometers
observing from the geographic South Pole at 100 and 150 GHz. The BICEP
polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7
degrees in absolute polarization orientation. BICEP observed the temperature
and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec.
= -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz
BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to
0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization
angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at
100 and 150 GHz, respectively. We also discuss the expected improvement of the
BICEP Galactic field observations with forthcoming BICEP2 and Keck
observations.Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE
Astronomical Telescopes and Instrumentation 201
EBEX: A balloon-borne CMB polarization experiment
EBEX is a NASA-funded balloon-borne experiment designed to measure the
polarization of the cosmic microwave background (CMB). Observations will be
made using 1432 transition edge sensor (TES) bolometric detectors read out with
frequency multiplexed SQuIDs. EBEX will observe in three frequency bands
centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each
band, respectively. This broad frequency coverage is designed to provide
valuable information about polarized foreground signals from dust. The
polarized sky signals will be modulated with an achromatic half wave plate
(AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a
fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky
with 8' resolution, allowing for observation of the angular power spectrum from
\ell = 20 to 1000. This will allow EBEX to search for both the primordial
B-mode signal predicted by inflation and the anticipated lensing B-mode signal.
Calculations to predict EBEX constraints on r using expected noise levels show
that, for a likelihood centered around zero and with negligible foregrounds,
99% of the area falls below r = 0.035. This value increases by a factor of 1.6
after a process of foreground subtraction. This estimate does not include
systematic uncertainties. An engineering flight was launched in June, 2009,
from Ft. Sumner, NM, and the long duration science flight in Antarctica is
planned for 2011. These proceedings describe the EBEX instrument and the North
American engineering flight.Comment: 12 pages, 9 figures, Conference proceedings for SPIE Millimeter,
Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
(2010
Software systems for operation, control, and monitoring of the EBEX instrument
We present the hardware and software systems implementing autonomous
operation, distributed real-time monitoring, and control for the EBEX
instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed
for a 14 day Antarctic flight that circumnavigates the pole. To meet its
science goals the EBEX instrument autonomously executes several tasks in
parallel: it collects attitude data and maintains pointing control in order to
adhere to an observing schedule; tunes and operates up to 1920 TES bolometers
and 120 SQUID amplifiers controlled by as many as 30 embedded computers;
coordinates and dispatches jobs across an onboard computer network to manage
this detector readout system; logs over 3~GiB/hour of science and housekeeping
data to an onboard disk storage array; responds to a variety of commands and
exogenous events; and downlinks multiple heterogeneous data streams
representing a selected subset of the total logged data. Most of the systems
implementing these functions have been tested during a recent engineering
flight of the payload, and have proven to meet the target requirements. The
EBEX ground segment couples uplink and downlink hardware to a client-server
software stack, enabling real-time monitoring and command responsibility to be
distributed across the public internet or other standard computer networks.
Using the emerging dirfile standard as a uniform intermediate data format, a
variety of front end programs provide access to different components and views
of the downlinked data products. This distributed architecture was demonstrated
operating across multiple widely dispersed sites prior to and during the EBEX
engineering flight.Comment: 11 pages, to appear in Proceedings of SPIE Astronomical Telescopes
and Instrumentation 2010; adjusted metadata for arXiv submissio
Observing the Evolution of the Universe
How did the universe evolve? The fine angular scale (l>1000) temperature and
polarization anisotropies in the CMB are a Rosetta stone for understanding the
evolution of the universe. Through detailed measurements one may address
everything from the physics of the birth of the universe to the history of star
formation and the process by which galaxies formed. One may in addition track
the evolution of the dark energy and discover the net neutrino mass.
We are at the dawn of a new era in which hundreds of square degrees of sky
can be mapped with arcminute resolution and sensitivities measured in
microKelvin. Acquiring these data requires the use of special purpose
telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and
the South Pole Telescope (SPT). These new telescopes are outfitted with a new
generation of custom mm-wave kilo-pixel arrays. Additional instruments are in
the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey.
Full list of 177 author available at http://cmbpol.uchicago.ed
- …
