68 research outputs found

    CMB Polarization Systematics Due to Beam Asymmetry: Impact on Inflationary Science

    Get PDF
    CMB polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a non-perturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.Comment: 14 pages, 11 figures, 6 tables. Minor corrections included to match published versio

    CMB Polarization Systematics Due to Beam Asymmetry: Impact on Inflationary Science

    Get PDF
    CMB polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a non-perturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.Comment: 14 pages, 11 figures, 6 tables. Minor corrections included to match published versio

    CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    Get PDF
    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.Comment: 12 pages, 15 figures, updated version of a paper accepted for Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE, 7020, 200

    Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP

    Get PDF
    We present a method of cross-calibrating the polarization angle of a polarimeter using BICEP Galactic observations. \bicep\ was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers observing from the geographic South Pole at 100 and 150 GHz. The BICEP polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7 degrees in absolute polarization orientation. BICEP observed the temperature and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec. = -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to 0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at 100 and 150 GHz, respectively. We also discuss the expected improvement of the BICEP Galactic field observations with forthcoming BICEP2 and Keck observations.Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 201

    EBEX: A balloon-borne CMB polarization experiment

    Get PDF
    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constraints on r using expected noise levels show that, for a likelihood centered around zero and with negligible foregrounds, 99% of the area falls below r = 0.035. This value increases by a factor of 1.6 after a process of foreground subtraction. This estimate does not include systematic uncertainties. An engineering flight was launched in June, 2009, from Ft. Sumner, NM, and the long duration science flight in Antarctica is planned for 2011. These proceedings describe the EBEX instrument and the North American engineering flight.Comment: 12 pages, 9 figures, Conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010

    Software systems for operation, control, and monitoring of the EBEX instrument

    Full text link
    We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3~GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.Comment: 11 pages, to appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010; adjusted metadata for arXiv submissio

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed
    corecore