35 research outputs found

    Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs

    Get PDF
    Metabolic homeostasis and circadian rhythms are closely intertwined biological processes. Nuclear receptors, as sensors of hormonal and nutrient status, are actively implicated in maintaining this physiological relationship. Although the orphan nuclear receptor estrogen-related receptor α (ERRα, NR3B1) plays a central role in the control of energy metabolism and its expression is known to be cyclic in the liver, its role in temporal control of metabolic networks is unknown. Here we report that ERRα directly regulates all major components of the molecular clock. ERRα-null mice also display deregulated locomotor activity rhythms and circadian period lengths under free-running conditions, as well as altered circulating diurnal bile acid and lipid profiles. In addition, the ERRα-null mice exhibit time-dependent hypoglycemia and hypoinsulinemia, suggesting a role for ERRα in modulating insulin sensitivity and glucose handling during the 24-hour light/dark cycle. We also provide evidence that the newly identified ERRα corepressor PROX1 is implicated in rhythmic control of metabolic outputs. To help uncover the molecular basis of these phenotypes, we performed genome-wide location analyses of binding events by ERRα, PROX1, and BMAL1, an integral component of the molecular clock. These studies revealed the existence of transcriptional regulatory loops among ERRα, PROX1, and BMAL1, as well as extensive overlaps in their target genes, implicating these three factors in the control of clock and metabolic gene networks in the liver. Genomic convergence of ERRα, PROX1, and BMAL1 transcriptional activity thus identified a novel node in the molecular circuitry controlling the daily timing of metabolic processes

    Axonal mRNA Translation: An Unexpected Link to Axon Survival and the Mitochondrion

    Get PDF
    Localized mRNA translation plays roles in dendrites and axons, but the regulatory mechanisms and downstream pathways are not well understood. An article in Cell by Yoon et al. (2012) shows that lamin B2, well known as a nuclear protein, undergoes regulated synthesis in axons, promoting mitochondrial function and axon survival

    This Message Will Self-Destruct: NMD Regulates Axon Guidance

    Get PDF
    The navigation of axons to their final destination can involve a sequence of steps that require different sets of guidance receptors. In this issue, Colak et al. show that regulated intra-axonal protein synthesis coupled to nonsense-mediated mRNA decay (NMD) controls a switch in Robo3.2 expression that is critical for navigation

    MicroRNA-132 Is Enriched in Developing Axons, Locally Regulates Rasa1 mRNA, and Promotes Axon Extension

    Full text link
    Developing axons can locally synthesize proteins, with roles in axon growth, guidance, and regeneration, but the mechanisms that regulate axonal mRNA translation are not well understood. MicroRNAs (miRNAs) are important regulators of translation but have still been little characterized in developing axons. Here we study mouse dorsal root ganglion (DRG) axons and show that their extension is impaired by conditional deficiency of the miRNA-processing enzyme Dicerin vitroandin vivo. A screen for axonal localization identifies a specific set of miRNAs preferentially enriched within the developing axon. High axonal expression and preferential localization were observed for miR-132, a miRNA previously known for roles in dendrites and dysregulation in major neurologic diseases. miR-132 knockdown reduced extension of cultured DRG axons, whereas overexpression increased extension. Mechanistically, miR-132 regulated the mRNA for the Ras GTPase activator Rasa1, a novel target in neuronal function. Moreover, miR-132 regulation of Rasa1 translation was seen in severed axons, demonstrating miRNA function locally within the axon. miR-132 expression in DRGs peaked in the period of maximum axon growthin vivo, consistent with its effect on axon growth, and suggesting a role as a developmental timer. Together, these findings identify miR-132 as a positive regulator of developing axon extension, acting through repression ofRasa1mRNA, in a mechanism that operates locally within the axon.</jats:p

    Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs

    No full text
    We describe a novel and highly sensitive method for the differential display of mRNAs, called ADDER (Amplification of Double-stranded cDNA End Restriction fragments). The technique involves the construction and PCR amplification of double-stranded cDNA restriction fragments complementary to 3′-terminal mRNA sequences. Aliquots of these cDNA fragments are then amplified by touchdown PCR with 192 pairs of display primers (16 upstream primers and 12 downstream primers) that differ in their ultimate and penultimate nucleotides and the PCR products are compared by size-fractionation on urea–polyacrylamide sequencing gels. By using the ADDER technology for the comparison of liver RNAs harvested at different times around the clock we detected nearly 300 cDNA fragments complementary to mRNAs with circadian accumulation profiles and sequenced 51 of them. The majority of these cDNAs correspond to genes which were not previously known to be rhythmically expressed. A large fraction of the identified genes encoded factors involved in the processing and detoxification of nutrients. This suggests that a primary purpose of circadian transcription in the liver is the anticipation of food processing and detoxification. Several genes involved in human disease were also identified, including the one encoding presenilin II, a protein implicated in the development of Alzheimer’s Disease

    IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    No full text
    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAs that are locally translated and have roles in axon pathfinding. However, the RNA-binding proteins involved in axon pathfinding, and their corresponding mRNA targets, are still largely unknown. Here we find that the RNA-binding protein IMP2 (Igf2bp2) is strikingly enriched in developing axon tracts, including in spinal commissural axons. We used the HITS-CLIP approach to perform a genome-wide identification of RNAs that interact directly with IMP2 in the native context of developing mouse brain. This IMP2 interactome was highly enriched for mRNA targets related to axon guidance. Accordingly, IMP2 knockdown in the developing spinal cord led to strong defects in commissural axon trajectories at the midline intermediate target. These results reveal a highly distinctive axonal enrichment of IMP2, show that it interacts with a network of axon guidance-related mRNAs, and reveal that it is required for normal axon pathfinding during vertebrate development

    Rhythms of Mammalian Body Temperature Can Sustain Peripheral Circadian Clocks

    Get PDF
    AbstractBackground: Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1°C–4°C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types.Results: In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a ΔT of 4°C (12 hr 37°C/12 hr 33°C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these “in vivo” temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus.Conclusions: We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals

    Effects of Post-natal Dietary Milk Fat Globule Membrane Polar Lipid Supplementation on Motor Skills, Anxiety, and Long-Term Memory in Adulthood

    No full text
    Early life nutrition critically impacts post-natal brain maturation and cognitive development. Post-natal dietary deficits in specific nutrients, such as lipids, minerals or vitamins are associated with brain maturation and cognitive impairments. Specifically, polar lipids (PL), such as sphingolipids and phospholipids, are important cellular membrane building blocks and are critical for brain connectivity due to their role in neurite outgrowth, synaptic formation, and myelination. In this preclinical study, we assessed the effects of a chronic supplementation with a source of PL extracted from an alpha-lactalbumin enriched whey protein containing 10% lipids from early life (post-natal day (PND) 7) to adulthood (PND 72) on adult motor skills, anxiety, and long-term memory. The motor skills were assessed using open field and rotarod test. Anxiety was assessed using elevated plus maze (EPM). Long-term object and spatial memory were assessed using novel object recognition (NOR) and Morris water maze (MWM). Our results suggest that chronic PL supplementation improved measures of spatial long-term memory accuracy and cognitive flexibility in the MWM in adulthood, with no change in general mobility, anxiety and exploratory behavior. Our results indicate memory specific functional benefits of long-term dietary PL during post-natal brain development.</jats:p

    Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus

    No full text
    In mammals, circadian oscillators exist not only in the suprachiasmatic nucleus, which harbors the central pacemaker, but also in most peripheral tissues. It is believed that the SCN clock entrains the phase of peripheral clocks via chemical cues, such as rhythmically secreted hormones. Here we show that temporal feeding restriction under light–dark or dark–dark conditions can change the phase of circadian gene expression in peripheral cell types by up to 12 h while leaving the phase of cyclic gene expression in the SCN unaffected. Hence, changes in metabolism can lead to an uncoupling of peripheral oscillators from the central pacemaker. Sudden large changes in feeding time, similar to abrupt changes in the photoperiod, reset the phase of rhythmic gene expression gradually and are thus likely to act through a clock-dependent mechanism. Food-induced phase resetting proceeds faster in liver than in kidney, heart, or pancreas, but after 1 wk of daytime feeding, the phases of circadian gene expression are similar in all examined peripheral tissues
    corecore