4,958 research outputs found

    OPTIMISATION OF A DRIVE SYSTEM AND ITS EPICYCLIC GEAR SET

    No full text
    International audienceThis paper describes the design of a drive consisting of a DC motor, a speed reducer, a lead screw transformation system, a power converter and its associated DC source. The objective is to reduce the mass of the system. Indeed, the volume and weight optimisation of an electrical drive is an important issue for embedded applications. Here, we present an analytical model of the system in a specific application and afterwards an optimisation of the motor and speed reducer main dimensions and the battery voltage in order to reduce the weight

    Multi objective optimisation of an electromagnetic valve actuator

    No full text
    International audienceThis paper is about a modelling and an optimisation of an electromechanical drive system. The device consists of a DC source, a power converter, a linear actuator and its load. The aim of the system is to drive a load along a linear displacement. The two main objectives are to reduce the actuator volume and the copper losses, which are contrary objectives. Here, we present an analytical modelling of the system and afterwards an optimisation of the linear actuator main dimensions in order to carry out the previous objectives

    Quantum dynamics in high codimension tilings: from quasiperiodicity to disorder

    Full text link
    We analyze the spreading of wavepackets in two-dimensional quasiperiodic and random tilings as a function of their codimension, i.e. of their topological complexity. In the quasiperiodic case, we show that the diffusion exponent that characterizes the propagation decreases when the codimension increases and goes to 1/2 in the high codimension limit. By constrast, the exponent for the random tilings is independent of their codimension and also equals 1/2. This shows that, in high codimension, the quasiperiodicity is irrelevant and that the topological disorder leads in every case, to a diffusive regime, at least in the time scale investigated here.Comment: 4 pages, 5 EPS figure

    Optimal design of a wound rotor synchronous generator using genetic algorithm

    No full text
    International audienceThe manufacturers are tempted to reduce the amount of active materials in the devices in order to lower the material bill. However, reducing the weight of the devices directly affects the energy efficiency. In this paper, a solution to this problem is proposed for the case of synchronous wound rotor generators. The trade-off between cost and efficiency is formulated as a constrained optimization problem and solved using a Genetic Algorithm. The cost optimization of three different machines is carried out through various design approaches. The proposed approach always gives better results than the classical approach concerning the global cost of the range

    Modeling 18FFDG^{18}F-FDG Kinetics during Acute Lung Injury: Experimental Data and Estimation Errors

    Get PDF
    Background: There is increasing interest in Positron Emission Tomography (PET) of 2-deoxy-2-[18F]flouro-D-glucose (18FFDG^{18}F-FDG) to evaluate pulmonary inflammation during acute lung injury (ALI). We assessed the effect of extra-vascular lung water on estimates of 18FFDG^{18}F-FDG-kinetics parameters in experimental and simulated data using the Patlak and Sokoloff methods, and our recently proposed four-compartment model. Methodology/Principal Findings Eleven sheep underwent unilateral lung lavage and 4 h mechanical ventilation. Five sheep received intravenous endotoxin (10 ng/kg/min). Dynamic 18FFDG^{18}F-FDG PET was performed at the end of the 4 h period. 18FFDG^{18}F-FDG net uptake rate (Ki), phosphorylation rate (k3), and volume of distribution (Fe) were estimated in three isogravitational regions for each method. Simulations of normal and ALI 18FFDG^{18}F-FDG-kinetics were conducted to study the dependence of estimated parameters on the transport rate constants to (k5) and from (k6) the extra-vascular extra-cellular compartment. The four-compartment model described 85.7% of the studied 18FFDG^{18}F-FDG-kinetics better than the Sokoloff model. Relative to the four-compartment model the Sokoloff model exhibited a consistent positive bias in Ki (3.32 [1.30–5.65] 10−4/min, p<0.001) and showed inaccurate estimates of the parameters composing Ki (k3 and Fe), even when Ki was similar for those methods. In simulations, errors in estimates of Ki due to the extra-vascular extra-cellular compartment depended on both k5 and k5/k6, with errors for the Patlak and Sokoloff methods of 0.02 [−0.01–0.18] and 0.40 [0.18–0.60] 10−3/min for normal lungs and of −0.47 [−0.89–0.72] and 2.35 [0.85–3.68] 10−3/min in ALI. Conclusions/Significance: 18FFDG^{18}F-FDG accumulation in lung extra-vascular fluid, which is commonly increased during lung injury, can result in substantial estimation errors using the traditional Patlak and Sokoloff methods. These errors depend on the extra-vascular extra-cellular compartment volume and its transport rates with other compartments. The four-compartment model provides more accurate quantification of 18FFDG^{18}F-FDG-kinetics than those methods in the presence of increased extra-vascular fluid

    Comparison of retinal nerve fiber layer thinning and retinal ganglion cell loss after optic nerve transection in adult albino rats

    Get PDF
    We compared the time-course and magnitude of retinal nerve fiber layer (RNFL) thinning with that of retinal ganglion cell (RGC) loss after intraorbital optic nerve transection (IONT) in adult rats

    Diachronous evolution of the alpine continental subduction wedge: evidence from P-T estimates in the Briançonnais Zone houillère (France - Western Alps).

    Get PDF
    International audienceThe study of continental subduction processes requires detailed Pressure Temperature (P-T) paths to understand the kinematic of burial and exhumation of continental units. In the French Western Alps, the Briançonnais zone is a remnant of the continental subduction wedge. P-T conditions have been estimated in its most internal parts, but there is a lack of data in the western part, known as the "Zone houillère". This Briançonnais Zone houillère is classically divided into two sub-units: the upper and lower Houiller units. This study focuses on both of these in the Clarée valley, north of Briançon. In this low-grade metamorphic terrain, estimation of P-T history is complicated because there are few adapted methods and these rocks have a poor metamorphic mineralogical content, including detrital metamorphic minerals inherited from their hercynian history. Therefore, to acquire accurate P-T estimates a multi-method approach is required, involving qualitative and quantitative Raman study of Carbonaceous Material (RSCM), chemical analysis from quantified X-ray maps and thermodynamic modelling of chlorites and K-white micas. Such multi-approach P-T estimates on a sandstone sample allow distinguishing hercynian peak metamorphic conditions of 371 ± 26°C and 3.5 ± 1.4 kbar and alpine peak metamorphic conditions of 275 ± 23°C and 5.9 ± 1.7 kbar. These results are consistent with our RSCM and Tmax estimates. Raman study conducted on organic-rich schist samples shows an eastward increase of the alpine Tmax in the upper Houiller unit, from 280 to 300°C across the Briançonnais Zone houillère. In contrast, carbonaceous material included in detrital grains of muscovite in the sandstone exhibits higher temperatures. This hercynian Tmax is estimated using thermodynamic modelling at 376 ± 50°C. According to these results and previous work in more internal parts of the Briançonnais zone, a geodynamic reconstruction is proposed, which is characterized by a diachronous evolution of the Briançonnais zone involved in alpine continental subduction at different times. The geothermal gradient in the Briançonnais zone changes from 8°C/km during early continental subduction, to 40°C/km during the collisional event at about 35-30 Ma. The intermediate gradient of 15°C/km estimated in the Briançonnais Zone houillère suggests that this unit was buried later, than the more internal Briançonnais units, after 40 Ma

    SHARDS: A global view of the star formation activity at z~0.84 and z~1.23

    Full text link
    In this paper, we present a comprehensive analysis of star-forming galaxies (SFGs) at intermediate redshifts (z~1). We combine the ultra-deep optical spectro-photometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) with deep UV-to-FIR observations in the GOODS-N field. Exploiting two of the 25 SHARDS medium-band filters, F687W17 and F823W17, we select [OII] emission line galaxies at z~0.84 and z~1.23 and characterize their physical properties. Their rest-frame equivalent widths (EWrf_{\mathrm{rf}}([OII])), line fluxes, luminosities, star formation rates (SFRs) and dust attenuation properties are investigated. The evolution of the EWrf_{\mathrm{rf}}([OII]) closely follows the SFR density evolution of the universe, with a trend of EWrf_{\mathrm{rf}}([OII])\propto(1+z)3^3 up to redshift z~1, followed by a possible flattening. The SF properties of the galaxies selected on the basis of their [OII] emission are compared with complementary samples of SFGs selected by their MIR and FIR emission, and also with a general mass-selected sample of galaxies at the same redshifts. We demonstrate observationally that the UVJ diagram (or, similarly, a cut in the specific SFR) is only partially able to distinguish the quiescent galaxies from the SFGs. The SFR-M_* relation is investigated for the different samples, yelding a logarithmic slope ~1, in good agreement with previous results. The dust attenuations derived from different SFR indicators (UV(1600), UV(2800), [OII], IR) are compared and show clear trends with respect to both the stellar mass and total SFR, with more massive and highly star-forming galaxies being affected by stronger dust attenuation.Comment: Replaced to match the accepted version (24 pages, 1 table, 17 figures). Published in ApJ, 812, 155 (2015): http://stacks.iop.org/0004-637X/812/15
    corecore