5,255 research outputs found

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    DEMAND FOR DIFFERENTIATED VEGETABLES

    Get PDF
    To obtain a healthier diet, Americans need to consume not only more vegetables, but also a healthier mix of vegetables. Household demands for eight categories of vegetables are investigated, using ACNielsen's Homescan data. A maximum simulated likelihood estimation procedure results in elasticity estimates which are somewhat larger than those obtained from both time-series and cross-section data in the literature. Even these larger elasticities are not large enough to bridge the dietary consumption gap without, and possibly even with, substantial price or food expenditure subsidies. Furthermore, Homescan data do indicate some significant differences in preferences for types of vegetables by household characteristics, such as race and ethnicity. This information could be used in designing more effective public interventions for boosting vegetable consumption in the United States.Food Consumption/Nutrition/Food Safety,

    Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber

    Full text link
    We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.Comment: 14 pages, 7 figures, accepted for publication in Optics Expres

    Optimal Algorithms for Scheduling under Time-of-Use Tariffs

    Get PDF
    We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for.Comment: 17 pages; A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS 201

    Co-Emergence of Specialized Endothelial Cells from Embryonic Stem Cells.

    Get PDF
    A well-formed and robust vasculature is critical to the health of most organ systems in the body. However, the endothelial cells (ECs) forming the vasculature can exhibit a number of distinct functional subphenotypes like arterial or venous ECs, as well as angiogenic tip and stalk ECs. In this study, we investigate the in vitro differentiation of EC subphenotypes from embryonic stem cells (ESCs). Using our staged induction methods and chemically defined mediums, highly angiogenic EC subpopulations, as well as less proliferative and less migratory EC subpopulations, are derived. Furthermore, the EC subphenotypes exhibit distinct surface markers, gene expression profiles, and positional affinities during sprouting. While both subpopulations contained greater than 80% VE-cad+/CD31+ cells, the tip/stalk-like EC contained predominantly Flt4+/Dll4+/CXCR4+/Flt-1- cells, while the phalanx-like EC was composed of higher numbers of Flt-1+ cells. These studies suggest that the tip-specific EC can be derived in vitro from stem cells as a distinct and relatively stable EC subphenotype without the benefit of its morphological positioning in the sprouting vessel

    A polyorogenic model for the Paleoproterozoic Trans-North China Belt: Insights from an integrated structural, metamorphic and geochronological study.

    No full text
    In the North China Craton, the Paleoproterozoic Trans-North China Belt (TNCB) is a nearly north-south trending zone, of 1200 km long and 300 km wide, that separates two Archean blocks. Previous tectonic models assumed that the TNCB is the result of a 1850 Ma collision between the two Archean eastern and western blocks with an intervening 2500 Ma magmatic arc

    Telomere dysfunction accurately predicts clinical outcome in chronic lymphocytic leukaemia, even in patients with early stage disease

    Get PDF
    © 2014 John Wiley & Sons Ltd. Defining the prognosis of individual cancer sufferers remains a significant clinical challenge. Here we assessed the ability of high-resolution single telomere length analysis (STELA), combined with an experimentally derived definition of telomere dysfunction, to predict the clinical outcome of patients with chronic lymphocytic leukaemia (CLL). We defined the upper telomere length threshold at which telomere fusions occur and then used the mean of the telomere 'fusogenic' range as a prognostic tool. Patients with telomeres within the fusogenic range had a significantly shorter overall survival (P  <  0·0001; Hazard ratio [HR] = 13·2, 95% confidence interval [CI]  = 11·6-106·4) and this was preserved in early-stage disease patients (P  <  0·0001, HR=19·3, 95% CI = 17·8-802·5). Indeed, our assay allowed the accurate stratification of Binet stage A patients into those with indolent disease (91% survival at 10 years) and those with poor prognosis (13% survival at 10 years). Furthermore, patients with telomeres above the fusogenic mean showed superior prognosis regardless of their IGHV mutation status or cytogenetic risk group. In keeping with this finding, telomere dysfunction was the dominant variable in multivariate analysis. Taken together, this study provides compelling evidence for the use of high-resolution telomere length analysis coupled with a definition of telomere dysfunction in the prognostic assessment of CLL
    corecore