216 research outputs found
Self-attraction effect and correction on three absolute gravimeters
The perturbations of the gravitational field due to the mass distribution of
an absolute gravimeter have been studied. The so called Self Attraction Effect
(SAE) is crucial for the measurement accuracy, especially for the International
Comparisons, and for the uncertainty budget evaluation. Three instruments have
been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a
numerical method based on FEM simulation. The observed effect has been treated
as an additional vertical gravity gradient. The correction (SAC) to be applied
to the computed g value has been associated with the specific height level,
where the measurement result is typically reported. The magnitude of the
obtained corrections is of order 1E-8 m/s2.Comment: 14 pages, 8 figures, submitted to Metrologi
Correction due to finite speed of light in absolute gravimeters
Correction due to finite speed of light is among the most inconsistent ones
in absolute gravimetry. Formulas reported by different authors yield
corrections scattered up to 8 Gal with no obvious reasons. The problem,
though noted before, has never been studied, and nowadays the correction is
rather postulated than rigorously proven. In this paper we make an attempt to
revise the subject. Like other authors, we use physical models based on signal
delays and the Doppler effect, however, in implementing the models we
additionally introduce two scales of time associated with moving and resting
reflectors, derive a set of rules to switch between the scales, and establish
the equivalence of trajectory distortions as obtained from either time delay or
distance progression. The obtained results enabled us to produce accurate
correction formulas for different types of instruments, and to explain the
differences in the results obtained by other authors. We found that the
correction derived from the Doppler effect is accountable only for of
the total correction due to finite speed of light, if no signal delays are
considered. Another major source of inconsistency was found in the tacit use of
simplified trajectory models
Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector
According to quantum measurement theory, "speed meters" -- devices that
measure the momentum, or speed, of free test masses -- are immune to the
standard quantum limit (SQL). It is shown that a Sagnac-interferometer
gravitational-wave detector is a speed meter and therefore in principle it can
beat the SQL by large amounts over a wide band of frequencies. It is shown,
further, that, when one ignores optical losses, a signal-recycled Sagnac
interferometer with Fabry-Perot arm cavities has precisely the same
performance, for the same circulating light power, as the Michelson speed-meter
interferometer recently invented and studied by P. Purdue and the author. The
influence of optical losses is not studied, but it is plausible that they be
fairly unimportant for the Sagnac, as for other speed meters. With squeezed
vacuum (squeeze factor ) injected into its dark port, the
recycled Sagnac can beat the SQL by a factor over the
frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same
circulating power kW as is used by the (quantum limited)
second-generation Advanced LIGO interferometers -- if other noise sources are
made sufficiently small. It is concluded that the Sagnac optical configuration,
with signal recycling and squeezed-vacuum injection, is an attractive candidate
for third-generation interferometric gravitational-wave detectors (LIGO-III and
EURO).Comment: 12 pages, 6 figure
Noise reduction in gravitational wave interferometers using feedback
We show that the quantum locking scheme recently proposed by Courty {\it et
al.} [Phys. Rev. Lett. {\bf 90}, 083601 (2003)] for the reduction of back
action noise is able to significantly improve the sensitivity of the next
generation of gravitational wave interferometers.Comment: 12 pages, 2 figures, in print in the Special Issue of J. Opt. B on
Fluctuations and Noise in Photonics and Quantum Optic
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
Proposal for a Joint German-British Interferometric Gravitational Wave Detector
For many years there has been steady progress towards the detection of gravitational radiation. It has now become clear that the next major step should be the construction of a number of long-baseline detectors around the world. An array of detectors of this type is expected to allow the observation of gravitational waves from a range of astrophysical sources, leading to improved insight in many areas including stellar collapse, binary coalescence and the expansion of the Universe.
We propose that one of these detectors be built by a collaboration formed around the gravitational wave groups in Britain and Germany. In this document we present our case for this collaborative venture and outline the design philosophy of our proposed instrument - an interferometric detector with arms of length close to 3km.
Two detectors of the same general type are planned for the USA (LIGO project), one is planned for Italy (Italian/French VIRGO project) and another is proposed for Australia (AIGO project). It is expected that all the long baseline detectors to be built will operate as part of a coordinated worldwide network
Mechanical aspects in interferometric gravity wave detectors
In order to measure the tiny effects of gravitational waves, strains in space (i.e. relative changes in distance) of as little as 10-21 or even less have to be detected, at frequencies ranging from 10011z to several kHz. Large laser interferometers are the most promising approach to reach such extreme sensitivities. This lsquostraightforwardrsquo road is, however, obstructed by a multitude of effects that cause (or fake) such fluctuations in distance. Among these are seismic motions, thermal vibrations of optical components, pressure fluctuations of the residual gas in the vacuum tubes, and fundamental effects such as Heisenberg's uncertainty relation. What all of these noise sources have in common is that their effects can be reduced by the choice of sufficiently large arm lengths. This is what dictates the (very expensive) choice of arm lengths of 3 to 4 km in the currently proposed gravitational wave detectors (USA, D-GB, F-I, AUS, JAP)
Salt restriction in kidney disease—a missed therapeutic opportunity?
The importance of salt restriction in the treatment of patients with renal disease has remained highly controversial. In the following we marshal the current evidence that salt plays a definite role in the genesis of hypertension and target organ damage, point to practical problems of salt restriction, and report on novel pathomechanisms of how salt affects blood pressure and causes target organ damage
The what and why of perceptual asymmetries in the visual domain
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions)
- …
