476 research outputs found
Planck Spectroscopy and the Quantum Noise of Microwave Beam Splitters
We use a correlation function analysis of the field quadratures to
characterize both the black body radiation emitted by a 50 Ohm load resistor
and the quantum properties of two types of beam splitters in the microwave
regime. To this end, we first study vacuum fluctuations as a function of
frequency in a Planck spectroscopy experiment and then measure the covariance
matrix of weak thermal states. Our results provide direct experimental evidence
that vacuum fluctuations represent the fundamental minimum quantum noise added
by a beam splitter to any given input signal.Comment: 5 pages, 4 figure
Coexistence of multi-photon processes and longitudinal couplings in superconducting flux qubits
In contrast to natural atoms, the potential energies for superconducting flux
qubit (SFQ) circuits can be artificially controlled. When the inversion
symmetry of the potential energy is broken, we find that the multi-photon
processes can coexist in the multi-level SFQ circuits. Moreover, there are not
only transverse but also longitudinal couplings between the external magnetic
fields and the SFQs when the inversion symmetry of potential energy is broken.
The longitudinal coupling would induce some new phenomena in the SFQs. Here we
will show how the longitudinal coupling can result in the coexistence of
multi-photon processes in a two-level system formed by a SFQ circuit. We also
show that the SFQs can become transparent to the transverse coupling fields
when the longitudinal coupling fields satisfy the certain conditions. We
further show that the quantum Zeno effect can also be induced by the
longitudinal coupling in the SFQs. Finally we clarify why the longitudinal
coupling can induce coexistence and disappearance of single- and two-photon
processes for a driven SFQ, which is coupled to a single-mode quantized field.Comment: 11 pages, 6 figure
Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography
Quantum state reconstruction involves measurement devices that are usually
described by idealized models, but not known in full detail in experiments. For
weak propagating microwaves, the detection process requires linear amplifiers
which obscure the signal with random noise. Here, we introduce a theory which
nevertheless allows one to use these devices for measuring all quadrature
moments of propagating quantum microwaves based on cross-correlations from a
dual-path amplification setup. Simultaneously, the detector noise properties
are determined, allowing for tomography. We demonstrate the feasibility of our
novel concept by proof-of-principle experiments with classical mixtures of weak
coherent microwaves.Comment: 11 pages, 3 figure
Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime
In cavity quantum electrodynamics (QED), light-matter interaction is probed
at its most fundamental level, where individual atoms are coupled to single
photons stored in three-dimensional cavities. This unique possibility to
experimentally explore the foundations of quantum physics has greatly evolved
with the advent of circuit QED, where on-chip superconducting qubits and
oscillators play the roles of two-level atoms and cavities, respectively. In
the strong coupling limit, atom and cavity can exchange a photon frequently
before coherence is lost. This important regime has been reached both in cavity
and circuit QED, but the design flexibility and engineering potential of the
latter allowed for increasing the ratio between the atom-cavity coupling rate
and the cavity transition frequency above the percent level. While these
experiments are well described by the renowned Jaynes-Cummings model, novel
physics is expected in the ultrastrong coupling limit. Here, we report on the
first experimental realization of a superconducting circuit QED system in the
ultrastrong coupling limit and present direct evidence for the breakdown of the
Jaynes-Cummings model.Comment: 5 pages, 3 figure
Anomalous absorption of bulk shear sagittal acoustic waves in a layered structure with viscous fluid
It is demonstrated theoretically that the absorptivity of bulk shear sagittal
waves by an ultra-thin layer of viscous fluid between two different elastic
media has a strong maximum (in some cases as good as 100%) at an optimal layer
thickness. This thickness is usually much smaller than the penetration depths
and lengths of transverse and longitudinal waves in the fluid. The angular
dependencies of the absorptivity are demonstrated to have significant and
unusual structure near critical angles of incidence. The effect of
non-Newtonian properties and non-uniformities of the fluid layer on the
absorptivity is also investigated. In particular, it is shown that the
absorption in a thin layer of viscous fluid is much more sensitive to non-zero
relaxation time(s) in the fluid layer than the absorption at an isolated
solid-fluid interface.Comment: 14 pages, 8 figure
Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits
We propose the implementation of a digital quantum simulation of spin chains
coupled to bosonic field modes in superconducting circuits. Gates with high
fidelities allows one to simulate a variety of Ising magnetic pairing
interactions with transverse field, Tavis-Cummings interaction between spins
and a bosonic mode, and a spin model with three-body terms. We analyze the
feasibility of the implementation in realistic circuit quantum electrodynamics
setups, where the interactions are either realized via capacitive couplings or
mediated by microwave resonators.Comment: Chapter in R. S. Anderssen et al. (eds.), Mathematics for Industry 11
(Springer Japan, 2015
Single shot cathode transverse momentum imaging in high brightness photoinjectors
In state of the art photoinjector electron sources, thermal emittance from photoemission dominates the final injector emittance. Therefore, low thermal emittance cathode developments and diagnostics are very important. Conventional thermal emittance measurements for the high gradient gun are time-consuming and thus thermal emittance is not measured as frequently as quantum efficiency during the lifetime of photocathodes, although both are important properties for the photoinjector optimizations. In this paper, a single shot measurement of photoemission transverse momentum, i.e., thermal emittance per rms laser spot size, is proposed for photocathode rf guns. By tuning the gun solenoid focusing, the electrons' transverse momenta at the cathode are imaged to a downstream screen, which enables a single shot measurement of both the rms value and the detailed spectra of the photoelectrons' transverse momenta. Both simulations and proof of principle experiments are reported
The coherent interaction between matter and radiation - A tutorial on the Jaynes-Cummings model
The Jaynes-Cummings (JC) model is a milestone in the theory of coherent
interaction between a two-level system and a single bosonic field mode. This
tutorial aims to give a complete description of the model, analyzing the
Hamiltonian of the system, its eigenvalues and eigestates, in order to
characterize the dynamics of system and subsystems. The Rabi oscillations,
together with the collapse and revival effects, are distinguishing features of
the JC model and are important for applications in Quantum Information theory.
The framework of cavity quantum electrodynamics (cQED) is chosen and two
fundamental experiments on the coherent interaction between Rydberg atoms and a
single cavity field mode are described.Comment: 22 pages, 7 figures. Tutorial. Submitted to a special issue of EPJ -
ST devoted to the memory of Federico Casagrand
- …
