190 research outputs found
Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination
Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring
In February 2004, the discovery of an incursion of the dengue vector Aedes aegypti into the town of Tennant Creek in the Northern Territory caused concern for the Northern Territory health authorities who proceeded to implement a Commonwealth-funded eradication program. To determine the origin of the incursion, we performed a genetic analysis on Ae. aegypti from several Queensland and overseas localities. A comparison of DNA sequences from the mitochondrial cytochrome oxidase 1 gene indicated that the incursion was probably from Cairns or Camooweal. This genetic marker was also useful in identifying a separate Townsville haplotype population and another population on Thursday Island in the Torres Strait that is genetically distant to the mainland populations. The possible use of this marker as a surveillance tool for identifying the origins of local and overseas incursions is discussed
Field evaluation of a novel trap baited with carbon dioxide produced by yeast for the collection of female aedes aegypti mosquitoes in Mexico
Abstract. A trap made from low-cost materials and using an attractant of a yeast mixture producing carbon dioxide was designed and evaluated to collect adult Aedes aegypti (L.) mosquitoes. The Trap Mosquito Box prototype was tested against the “standards” BG-Sentinel traps and CDC backpack aspirator in the field. The mean numbers of mosquitoes (± standard deviation) caught by the three different collection methods were: Trap Mosquito Box 2.42 (± 3.08), BG-Sentinel trap 2.86 (± 3.71), and backpack aspirator 0.59 (± 0.90). Statistical tests showed the Trap Mosquito Box and BG-Sentinel trap were equally effective in collecting A. aegypti and both methods were significantly different than the backpack aspirator. Emission of carbon dioxide produced by the yeast mixture was greatest during the first hours after incubation in a laboratory and captured the most mosquitoes in the Trap Mosquito Box. Production of carbon dioxide [Y = -631.24 + 941.26 (log x)] and the rate of mosquitoes captured per time period [Y = 20.29 + 23.50 (log x)] were best explained by logarithmic regressions. Advantages and disadvantages of the Trap Mosquito Box for mosquito surveillance are discussed
Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea
Abstract. Background. Nuclear ribosomal DNA (rDNA) genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2) and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG). This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation) through heteroduplex analysis and DNA sequencing via cloning. Results. Genetic evaluation of over 300 individuals revealed that A. longirostris comprises eight ITS2 PCR-RFLP genotypes and nine ITS2 heteroduplex genotypes showing distinct copy variant organization profiles after PCR amplification. Seven of these nine genotypes were found to be sympatric with other genotypes. Phylogenetic analysis of cloned ITS2 PCR products and mtDNA COI confirmed all nine clades with evidence of reproductive isolation at the rDNA locus. Compensatory base changes in the ITS2 secondary structure or in pseudoknots were absent when closely related species were assessed. Individuals from each ITS2 genotype showed the same copy variant heteroduplex profile suggesting that the rDNA array is fixed within each genotype. Conclusion. The centromere-proximal position of the rDNA array in Anopheles mosquitoes has probably reduced interchromosomal recombination leaving intrachromosomal events responsible for the observed pattern of concerted evolution we see in these mosquitoes. The stability of these intragenomic ITS2 copy variants within individuals and interbreeding populations suggests that rDNA is moving as a single evolutionary unit through natural populations to fixation and has provided a complementary diagnostic tool to the restriction digest for studying genetic discontinuities and species boundaries. In this, the utility of the ITS2 as a universal taxonomic marker is probably contingent on several factors pertaining to spacer dimensions and the genomic location of the rDNA array with respect to recombination and proximity to regions potentially under selection
The dengue vector Aedes aegypti: What comes next
Abstract Aedes aegypti is the urban vector of dengue viruses worldwide. While climate influences the geographical distribution of this mosquito species, other factors also determine the suitability of the physical environment. Importantly, the close association of A. aegypti with humans and the domestic environment allows this species to persist in regions that may otherwise be unsuitable based on climatic factors alone. We highlight the need to incorporate the impact of the urban environment in attempts to model the potential distribution of A. aegypti and we briefly discuss the potential for future technology to aid management and control of this widespread vector species
Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs
Successful malaria elimination strategies require interventions that target changing vector behaviours
BACKGROUND: The ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide.Hypothesis and how to test it: Currently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific.
DISCUSSION: Here, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses.
CONCLUSIONS: Behavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination
Gene flow between island populations of the malaria mosquito, Anopheles hinesorum, may have contributed to the spread of divergent host preference phenotypes
Anopheles hinesorum is a mosquito species with variable host preference. Throughout New Guinea and northern Australia, An. hinesorum feeds on humans (it is opportunistically anthropophagic) while in the south-west Pacific's Solomon Archipelago, the species is abundant but has rarely been found biting humans (it is exclusively zoophagic in most populations). There are at least two divergent zoophagic (nonhuman biting) mitochondrial lineages of An. hinesorum in the Solomon Archipelago representing two independent dispersals. Since zoophagy is a derived (nonancestral) trait in this species, this leads to the question: has zoophagy evolved independently in these two populations? Or conversely: has nuclear gene flow or connectivity resulted in the transfer of zoophagy? Although we cannot conclusively answer this, we find close nuclear relationships between Solomon Archipelago populations indicating that recent nuclear gene flow has occurred between zoophagic populations from the divergent mitochondrial lineages. Recent work on isolated islands of the Western Province (Solomon Archipelago) has also revealed an anomalous, anthropophagic island population of An. hinesorum. We find a common shared mitochondrial haplotype between this Solomon Island population and another anthropophagic population from New Guinea. This finding suggests that there has been recent migration from New Guinea into the only known anthropophagic population from the Solomon Islands. Although currently localized to a few islands in the Western Province of the Solomon Archipelago, if anthropophagy presents a selective advantage, we may see An. hinesorum emerge as a new malaria vector in a region that is now working on malaria elimination
Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands
Background:
Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship.
Methods:
Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall.
Results:
In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found.
Conclusions:
Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors
- …
