3,876 research outputs found

    Orthotropic cyclic stress-softening model for pure shear during repeated loading and unloading

    Get PDF
    We derive an orthotropic model to describe the cyclic stress softening of a carbon-filled rubber vulcanizate through multiple stress-strain cycles with increasing values of the maximum strain. We specialize the deformation to pure shear loading. As a result of strain-induced anisotropy following on from initial primary loading, the material may subsequently be described as orthotropic because in pure shear there are three different principal stretches so that the strain-induced anisotropy of the stress response is different in each of these three directions. We derive non-linear orthotropic models for the elastic response, stress relaxation and residual strain to model accurately the inelastic features associated with cyclic stress softening. We then develop an orthotropic version of the Arruda-Boyce eight-chain model of elasticity and then combine it with the ideas previously developed in this paper to produce an orthotropic constitutive relation for the cyclic stress softening of a carbon-filled rubber vulcanizate. The model developed here includes the widely occurring effects of hysteresis, stress-relaxation and residual strain. The model is found to compare well with experimental data

    Lyophilisation of lentiviral pseudotypes for the development and distribution of virus neutralisation assay kits for rabies, Marburg and influenza viruses

    Get PDF
    Purpose: Some conventional serological assays can accurately quantify neutralising antibody responses raised against epitopes on virus glycoproteins, enabling mass vaccine evaluation and serosurveillance studies to take place. However, these assays often necessitate the handling of wild-type virus in expensive high biosafety laboratories, which restricts the scope of their application, particularly in resource-deprived areas. A solution to this issue is the use of lentiviral pseudotype viruses (PVs)—chimeric, replication-deficient virions that imitate the binding and entry mechanisms of their wild-type equivalents. Pseudotype virus neutralisation assays (PVNAs) bypass high biosafety requirements and yield comparable results to established assays. This study explores the potential for using lyophilisation of pseudotypes as a cost-effective, alternative means for production, distribution and storage of a PVNAbased diagnostic kit. Methods & Materials: Rabies, Marburg and H5 subtype Influenza virus pseudotypes were each suspended in cryoprotectant solutions of various molarities and subjected to freeze-drying before incubation at a variety of temperatures, humidities and time periods. Samples were then employed in antibody neutralisation assays using specific sera. Results: High levels of PV titre were retained post-lyophilisation, with acceptable levels of virus activity maintained even after medium-term storage in tropical conditions. Also, the performance of PVs in neutralisation assays was not affected by the lyophilisation process. Conclusion: These results confirm the viability of a freeze-dried PVNA-based diagnostic kit, which could considerably facilitate in-field serology for a number of clinically important viruses

    The Individual Recovery Outcomes Counter:preliminary validation of a personal recovery measure

    Get PDF
    Aims and methodThe Individual Recovery Outcomes Counter (I.ROC) is to date the only recovery outcomes instrument developed in Scotland. This paper describes the steps taken to initially assess its validity and reliability, including factorial analysis, internal consistency and a correlation benchmarking analysis.ResultsThe I.ROC tool showed high internal consistency. Exploratory factor analysis indicated a two-factor structure comprising intrapersonal recovery (factor 1) and interpersonal recovery (factor 2), explaining between them over 50% of the variance in I.ROC scores. There were no redundant items and all loaded on at least one of the factors. The I.ROC significantly correlated with widely used existing instruments assessing both personal recovery and clinical outcomes.Clinical implicationsI.ROC is a valid and reliable measure of recovery in mental health, preferred by service users when compared with well-established instruments. It could be used in clinical settings to map individual recovery, providing feedback for service users and helping to assess service outcomes.</p

    AFM imaging and plasmonic detection of organic thin-films deposited on nanoantenna arrays

    Get PDF
    In this study, atomic force microscopy (AFM) imaging has been used to reveal the preferential deposition of organic thin-films on patterned nanoantenna array surfaces - identifying the localised formation of both monolayer and multilayer films of octadecanethiol (ODT) molecules, depending on the concentration of the solutions used. Reliable identification of this selective deposition process has been demonstrated for the first time, to our knowledge. Organic thin-films, in particular films of ODT molecules, were deposited on plasmonic resonator surfaces through a chemi-sorption process - using different solution concentrations and immersion times. The nanoantennas based on gold asymmetric-split ring resonator (A-SRR) geometries were fabricated on zinc selenide (ZnSe) substrates using electron-beam lithography and the lift-off technique. Use of the plasmonic resonant-coupling technique has enabled the detection of ODT molecules deposited from a dilute, micromolar (1 M) solution concentration - with attomole sensitivity of deposited material per A-SRR – a value that is three orders of magnitude lower in concentration than previously reported. Additionally, on resonance, the amplitude of the molecular vibrational resonance peaks is typically an order of magnitude larger than that for the non-resonant coupling. Fourier-transform infrared (FTIR) spectroscopy shows molecule specific spectral responses – with magnitudes corresponding to the different film thicknesses deposited on the resonator surfaces. The experimental results are supported by numerical simulation

    On the complex singularities of the inverse Langevin function

    Get PDF
    We study the inverse Langevin function L1(x)\mathscr{L}^{-1}(x) because of its importance in modelling limited-stretch elasticity where the stress and strain energy become infinite as a certain maximum strain is approached, modelled here by x1x\to1. The only real singularities of the inverse Langevin function L1(x)\mathscr{L}^{-1}(x) are two simple poles at x=±1x=\pm1 and we see how to remove their effects either multiplicatively or additively. In addition, we find that L1(x)\mathscr{L}^{-1}(x) has an infinity of complex singularities. Examination of the Taylor series about the origin of L1(x)\mathscr{L}^{-1}(x) shows that the four complex singularities nearest the origin are equidistant from the origin and have the same strength; we develop a new algorithm for finding these four complex singularities. Graphical illustration seems to point to these complex singularities being of a square root nature. An exact analysis then proves these are square root branch points.Comment: 25 pages, 10 figures, 4 tables, 50 equations, 28 reference

    PlantID – DNA-based identification of multiple medicinal plants in complex mixtures

    Get PDF
    Background An efficient method for the identification of medicinal plant products is now a priority as the global demand increases. This study aims to develop a DNA-based method for the identification and authentication of plant species that can be implemented in the industry to aid compliance with regulations, based upon the economically important Hypericum perforatum L. (St John’s Wort or Guan ye Lian Qiao). Methods The ITS regions of several Hypericum species were analysed to identify the most divergent regions and PCR primers were designed to anneal specifically to these regions in the different Hypericum species. Candidate primers were selected such that the amplicon produced by each species-specific reaction differed in size. The use of fluorescently labelled primers enabled these products to be resolved by capillary electrophoresis. Results Four closely related Hypericum species were detected simultaneously and independently in one reaction. Each species could be identified individually and in any combination. The introduction of three more closely related species to the test had no effect on the results. Highly processed commercial plant material was identified, despite the potential complications of DNA degradation in such samples. Conclusion This technique can detect the presence of an expected plant material and adulterant materials in one reaction. The method could be simply applied to other medicinal plants and their problem adulterants

    The use of equine influenza pseudotypes for serological screening

    Get PDF
    Standard assays used for influenza serology present certain practical issues, such as inter-laboratory variability, complex protocols and the necessity for handling certain virus strains in high biological containment facilities. In an attempt to address this, avian and human influenza HA pseudotyped retroviruses have been successfully employed in antibody neutralization assays. In this study we generated an equine influenza pseudotyped lentivirus for serological screening. This was achieved by co-transfection of HEK293T cells with plasmids expressing the haemagglutinin (HA) protein of an H3N8 subtype equine influenza virus strain, HIV gag-pol and firefly luciferase reporter genes and harvesting virus from supernatant. In order to produce infective pseudotype particles it was necessary to additionally co-transfect a plasmid encoding the TMPRSS2 endoprotease to cleave the HA. High titre pseudotype virus (PV) was then used in PV antibody neutralization assays (PVNAs) to successfully distinguish between vaccinated and non-vaccinated equines. The sera were also screened by single radial haemolysis (SRH) assay. There was a 65% correlation between the results of the two assays, with the PVNA assay appearing slightly more sensitive. Future work will extend the testing of the PVNA with a larger number of serum samples to assess sensitivity/specificity, inter/intra-laboratory variability and to define a protective titre

    The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0) : an efficient and user-friendly model of city cooling

    Get PDF
    The adverse impacts of urban heat and global climate change are leading policymakers to consider green and blue infrastructure (GBI) for heat mitigation benefits. Though many models exist to evaluate the cooling impacts of GBI, their complexity and computational demand leaves most of them largely inaccessible to those without specialist expertise and computing facilities. Here a new model called The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET) is presented. TARGET is designed to be efficient and easy to use, with fewer user-defined parameters and less model input data required than other urban climate models. TARGET can be used to model average street-level air temperature at canyon-to-block scales (e.g. 100 m resolution), meaning it can be used to assess temperature impacts of suburb-to-city-scale GBI proposals. The model aims to balance realistic representation of physical processes and computation efficiency. An evaluation against two different datasets shows that TARGET can reproduce the magnitude and patterns of both air temperature and surface temperature within suburban environments. To demonstrate the utility of the model for planners and policymakers, the results from two precinct-scale heat mitigation scenarios are presented. TARGET is available to the public, and ongoing development, including a graphical user interface, is planned for future work

    Deposition of Organic Molecules on Gold Nanoantennas for Sensing

    Get PDF
    The deposition of organic molecules on gold nanoantennas is reported through chemisorption for sensing in the midinfrared (mid-IR) spectral range. The specific nanostructures are gold asymmetric-split ring resonators (A-SRRs) based on circular-geometry with two different ‘arc’ lengths. The plasmonic resonant coupling technique was used to match the vibrational responses of the targeted molecules for their enhanced detection. Gold nanostructures are functionalised through chemisorption of octadecanethiol (ODT) in ethanol solution. The molecular vibrational responses were measured using a microscope coupled Fourier Transform Infrared (FTIR) spectroscopy. The experimental findings are closely supported using FDTD simulation. The modified nanoantennas surfaces are capable of supporting wide range of organic-sensing applications
    corecore