97 research outputs found
Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly Melitaea cinxia
Environmental change can have drastic effects on natural populations. To successfully predict such effects, we need to understand how species that follow different life-history strategies respond to stressful conditions. Here I focus on two stressors, increased flight and dietary restriction, and their effects on bioenergetics and life-history. Using the Glanville fritillary butterfly (Melitaea cinxia), I subjected mated females to three treatments: (1) control conditions, (2) repeated forced flight with unlimited food, and (3) repeated forced flight coupled with food restriction. Interestingly, flight increased fecundity: females in both flight treatments initiated oviposition earlier, laid more egg clutches, and had higher total fecundity than control females. However, food-restriction by 50% reduced clutch size and resulted in an approximately 25% decrease in total fecundity compared to flown females with unlimited food. There were no differences in egg wet mass, water content or hatching success. Flown females with unlimited food appeared to exhibit a trade-off between reproduction and lifespan: they had higher mass-independent resting metabolic rate and shorter lifespan than females in the other treatments. Mass-independent flight metabolic rate, reflecting flight capacity, did not differ among the treatments. There were no differences in the rate of metabolic senescence across the treatments. The current findings suggest a mechanistic link between flight and reproduction, potentially mediated by juvenile hormone signalling. It appears that this wing-monomorphic butterfly does not show an oogenesis-flight trade-off often found in wing-dimorphic insects. Nevertheless, nectar-feeding is needed for achieving maximum reproductive output, suggesting that diminishing nectar resources may negatively impact natural populations.Peer reviewe
Lentoaineenvaihduntanopeuden vaihtelu täpläverkkoperhosella
Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects.
This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance.
High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions.
The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling.
In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.Dispersaali, eli levittäytyminen, on yksilön synnyinpaikasta poispäin suuntautuvaa liikettä. Dispersaalilla on merkittäviä seurauksia niin yksilöille kuin populaatioille. Dispersaali vähentää sisäsiittoisuutta ja yksilöiden välistä kilpailua, mutta kuluttaa aikaa ja energiaa ja voi olla myös vaarallista. Dispersaaliin kohdistuukin voimakkaita valintapaineita, erityisesti kun elinalueet sijaitsevat etäällä toisistaan. Lajit, jotka elävät pirstoutuneissa elinympäristöissä, ovat riippuvaisia dispersaalista. Dispersaalilla on keskeinen merkitys eliöiden sopeutuessa muuttuviin ympäristöoloihin.
Dispersaali ei ole satunnainen prosessi. Tässä työssä on tutkittu geneettisiä ja fysiologisia tekijöitä, jotka vaikuttavat pirstoutuneissa elinympäristöissä elävän täpläverkkoperhosen (Melitaea cinxia) dispersaaliin. Keskeinen dispersaaliin kytköksissä oleva mitta on perhosen lentokyvykkyys, jota tutkittiin mittaamalla lentoaineenvaihduntanopeutta. Työssä selvitettiin lentoaineenvaihduntaan vaikuttavia tekijöitä sekä lentoaineenvaihdunnan yhteyttä maastossa mitattuun dispersaaliin. Yksilöitä seurattiin erikoisvalmisteista tutkaa käyttäen. Perhosten selkään kiinnitettiin pieni antenni ja perhoset vapautettiin. Lisäksi perhosten liikkeitä maastossa seurattiin merkintä-takaisinpyyntimenetelmien avulla. Työssä tutkittiin myös aineenvaihduntanopeuden yhteyttä elinikään, sillä runsas hapenkulutus voi olla haitallista.
Työssä keskeisessä osassa on geeni Pgi, jonka koodaama entsyymi osallistuu sokeriaineenvaihduntaan. Pgi:ssä esiintyvän muuntelun todettiin olevan yhteydessä lentoaineenvaihduntanopeuteen; kaksi yleisintä genotyyppiä eroavat toisistaan lentokyvykkyydessä. Pgi:n vaikutus on sidoksissa lämpötilaan siten, että toinen genotyyppi lentää parhaiten alhaisissa lämpötiloissa, toinen korkeissa. Lentoaineenvaihdunta ja maastossa tutkalla mitattu dispersaali korreloivat positiivisesti: naarasperhoset, joilla oli nopea aineenvaihdunta lensivät pitkiä matkoja. Kun naaraiden ja koiraiden lentoaineenvaihduntaa verrattiin merkintä-takaisinpyyntikokeen lentomatkoihin, huomattiin, että koirailla riippuvuussuhde oli negatiivinen; koiraat, joilla oli nopea aineenvaihdunta liikkuivat tyypillisesti lyhyitä matkoja. Tulos heijastanee sukupuolten välisiä eroja lennon tarkoituksessa. Naaraat hyötyvät jälkeläisten levittämisestä laajalle, kun taas koiraiden päätehtävänä on löytää naaraita ja paritella. Vahvat koiraat voivat menestyksekkäästi vallata reviirejä, jolloin heikommat koiraat joutuvat liikkumaan enemmän. Lentoaineenvaihduntanopeus korreloi positiivisesti eliniän kanssa, eikä nopea aineenvaihdunta siten lyhennä elinikää. Lentoaineenvaihdunta ja elinikä voivat olla yhteydessä yleiseen kelpoisuuteen
"Peace, love and unity, ühesõnaga." Subkultuuride käsitlus Eesti ja Soome peavooluajakirjanduses
http://tartu.ester.ee/record=b2510262~S1*es
Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting
1. Pesticide exposure has been implicated as a contributor to insect pollinator declines. In social bees, which are crucial pollination service providers, the effect of low-level chronic exposure is typically non-lethal leading researchers to consider whether exposure induces sub-lethal effects on behaviour and whether such impairment can affect colony development. 2. Studies under laboratory conditions can control levels of pesticide exposure and elucidate causative effects, but are often criticised for being unrealistic. In contrast, field studies can monitor bee responses under a more realistic pesticide exposure landscape; yet typically such findings are limited to correlative results, and can lack true controls or sufficient replication. We attempt to bridge this gap by exposing bumblebees to known amounts of pesticides when colonies are placed in the field. 3. Using 20 bumblebee colonies, we assess the consequences of exposure to the neonicotinoid clothianidin, provided in sucrose at a concentration of five parts per billion, over five weeks. We monitored foraging patterns and pollen collecting performance from 3282 bouts using either a non-invasive photographic assessment, or by extracting the pollen from returning foragers. We also conducted a full colony census at the beginning and end of the experiment. 4. In contrast to studies on other neonicotinoids, showing clear impairment to foraging behaviours, we detected only subtle changes to patterns of foraging activity and pollen foraging during the course of the experiment. However, our colony census measures showed a more pronounced effect of exposure, with fewer adult workers and sexuals in treated colonies after five weeks. 5. Synthesis and applications. Pesticide induced impairments on colony development and foraging could impact on the pollination service that bees provide. Therefore our findings, that bees show subtle changes in foraging behaviour and reductions in colony size after exposure to a common pesticide, has important implications and helps to inform the debate over whether the benefits of systemic pesticide application to flowering crops outweigh the costs. We propose that our methodology is an important advance to previous semi-field methods and should be considered when considering improvements to current ecotoxicological guidelines for pesticide risk assessment
Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia
Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage), resting metabolic rate and lifespan (repair and maintenance), flight metabolic rate (flight capacity), egg number and composition (reproduction), and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a changing world.Peer reviewe
Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly
Dispersal is important for determining both species ecological processes, such as population viability, and its evolutionary processes, like gene flow and local adaptation. Yet obtaining accurate estimates in the wild through direct observation can be challenging or even impossible, particularly over large spatial and temporal scales. Genotyping many individuals from wild populations can provide detailed inferences about dispersal. We therefore utilized genomewide marker data to estimate dispersal in the classic metapopulation of the Glanville fritillary butterfly (Melitaea cinxia L.), in the Aland Islands in SW Finland. This is an ideal system to test the effectiveness of this approach due to the wealth of information already available covering dispersal across small spatial and temporal scales, but lack of information at larger spatial and temporal scales. We sampled three larvae per larval family group from 3732 groups over a six-year period and genotyped for 272 SNPs across the genome. We used this empirical data set to reconstruct cases where full-sibs were detected in different local populations to infer female effective dispersal distance, that is, dispersal events directly contributing to gene flow. On average this was one kilometre, closely matching previous dispersal estimates made using direct observation. To evaluate our power to detect full-sib families, we performed forward simulations using an individual-based model constructed and parameterized for the Glanville fritillary metapopulation. Using these simulations, 100% of predicted full-sibs were correct and over 98% of all true full-sib pairs were detected. We therefore demonstrate that even in a highly dynamic system with a relatively small number of markers, we can accurately reconstruct full-sib families and for the first time make inferences on female effective dispersal. This highlights the utility of this approach in systems where it has previously been impossible to obtain accurate estimates of dispersal over both ecological and evolutionary scales.Peer reviewe
Genetics of Dispersal
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.Peer reviewe
Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments
Evolutionary changes in natural populations are often so fast that the evolutionary dynamics may influence ecological population dynamics and vice versa. Here we construct an eco-evolutionary model for dispersal by combining a stochastic patch occupancy metapopulation model with a model for changes in the frequency of fast-dispersing individuals in local populations. We test the model using data on allelic variation in the gene phosphoglucose isomerase (Pgi), which is strongly associated with dispersal rate in the Glanville fritillary butterfly. Population-specific measures of immigration and extinction rates and the frequency of fast-dispersing individuals among the immigrants explained 40% of spatial variation in Pgi allele frequency among 97 local populations. The model clarifies the roles of founder events and gene flow in dispersal evolution and resolves a controversy in the literature about the consequences of habitat loss and fragmentation on the evolution of dispersal
Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities
Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary.Peer reviewe
- …
