55 research outputs found

    Identification of GPI anchor attachment signals by a Kohonen self-organizing map

    Get PDF
    Motivation: Anchoring of proteins to the extracytosolic leaflet of membranes via C-terminal attachment of glycosylphosphatidylinositol (GPI) is ubiquitous and essential in eukaryotes. The signal for GPI-anchoring is confined to the C-terminus of the target protein. In order to identify anchoring signals in silico, we have trained neural networks on known GPI-anchored proteins, systematically optimizing input parameters. Results: A Kohonen self-organizing map, GPI-SOM, was developed that predicts GPI-anchored proteins with high accuracy. In combination with SignalP, GPI-SOM was used in genome-wide surveys for GPI-anchored proteins in diverse eukaryotes. Apart from specialized parasites, a general trend towards higher percentages of GPI-anchored proteins in larger proteomes was observed. Availability: GPI-SOM is accessible on-line at http://gpi.unibe.ch. The source code (written in C) is available on the same website. Contact: [email protected] Supplementary information: Positive training set, performance test sets and lists of predicted GPI-anchored proteins from different eukaryotes in fasta forma

    Identification of a Gene Expression Signature Common to Distinct Cancer Pathways

    Get PDF
    Mutations in cancer-causing genes induce changes in gene expression programs critical for malignant cell transformation. Publicly available gene expression profiles produced by modulating the expression of distinct cancer genes may therefore represent a rich resource for the identification of gene signatures common to seemingly unrelated cancer genes. We combined automatic retrieval with manual validation to obtain a data set of high-quality gene microarray profiles. This data set was used to create logical models of the signaling events underlying the observed expression changes produced by various cancer genes and allowed to uncover unknown and verifiable interactions. Data clustering revealed novel sets of gene expression profiles commonly regulated by distinct cancer genes. Our method allows retrieval of significant new information and testable hypotheses from a pool of deposited cancer gene expression experiments that are otherwise not apparent or appear insignificant from single measurements. The complete results are available through a web-application at http://biodata.ethz.ch/cgi-bin/geologic

    Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms.</p> <p>Results</p> <p>We have developed Reptile <url>http://reptile.unibe.ch</url>, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites.</p> <p>Conclusion</p> <p>Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at <url>http://genomics.unibe.ch/dora</url>.</p

    p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans

    Get PDF
    Type II endometrial carcinomas are a highly aggressive group of tumour subtypes that are frequently associated with inactivation of the TP53 tumour suppressor gene. We show that mice with endometrium-specific deletion of Trp53 initially exhibited histological changes that are identical to known precursor lesions of type II endometrial carcinomas in humans and later developed carcinomas representing all type II subtypes. The mTORC1 signalling pathway was frequently activated in these precursor lesions and tumours, suggesting a genetic cooperation between this pathway and Trp53 deficiency in tumour initiation. Consistent with this idea, analyses of 521 human endometrial carcinomas identified frequent mTORC1 pathway activation in type I as well as type II endometrial carcinoma subtypes. mTORC1 pathway activation and p53 expression or mutation status each independently predicted poor patient survival. We suggest that molecular alterations in p53 and the mTORC1 pathway play different roles in the initiation of the different endometrial cancer subtypes, but that combined p53 inactivation and mTORC1 pathway activation are unifying pathogenic features among histologically diverse subtypes of late stage aggressive endometrial tumours

    Adverse perinatal outcomes for obese women are influenced by the presence of comorbid diabetes and hypertensive disorders

    Get PDF
    Maternal obesity often occurs together with comorbid diabetes and hypertensive disorders. All three conditions are independently associated with negative perinatal outcomes. Our objective was to determine the risk and burden of adverse perinatal outcome that could be attributed to maternal obesity in combination with a comorbid status. We analyzed data from 324'664 singleton deliveries in Switzerland between 2005 and 2016. For the association of maternal obesity in the presence or absence of comorbidities with various perinatal outcomes, we estimated adjusted relative risk (RR) using multivariable regression modeling and determined the multivariable-adjusted attributable fraction of the population (AFp). Obesity was a main predictor for macrosomia, fracture of the clavicle, failure to progress in labor and prolonged labor. By stratifying women based on comorbidities, we identified significantly increased risk for preterm birth and early neonatal death only for women diagnosed with a comorbidity. However, various other outcomes were independently associated with either obesity or comorbidities. The AFp showed greatest reduction in comorbidities (15.4/15.0/13.2%), in macrosomia (6.3%) and in shoulder dystocia (4.8%) if all women were to become non-obese. We suggest that comorbidities such as diabetes and hypertensive disorders should be considered when relating maternal obesity to adverse perinatal outcomes

    Evolution of chlorophyll degradation is associated with plant transition to land

    Full text link
    Colonization of land by green plants (Viridiplantae) some 500 million years ago was made possible by large metabolic and biochemical adaptations. Chlorophyll, the central pigment of photosynthesis, is highly photo-active. In order to mitigate deleterious effects of pigment accumulation, some plants have evolved a coordinated pathway to deal with chlorophyll degradation end-products, so-called phyllobilins. This pathway has been so far mostly unravelled in Arabidopsis thaliana. Here, large-scale comparative phylogenomic coupled to an innovative biochemical characterization strategy of phyllobilins allow a better understanding of how such a pathway appeared in Viridiplantae. Our analysis reveals a stepwise evolution of the canonical pheophorbide a monooxygenase/phyllobilin pathway. It appears to have evolved gradually, first in chlorophyte's chloroplasts, to ensure multicellularity by detoxifying chlorophyll catabolites, and in charophytes outside chloroplasts to allow adaptation of embryophytes to land. At least six out of the eight genes involved in the pathway were already present in the last common ancestor of green plants. This strongly suggests parallel evolution of distinct enzymes catalysing similar reactions in various lineages, particularly for the dephytylation step. Together, our study suggests that chlorophyll detoxification accompanied the transition from water to land, and was therefore of great importance for plant diversification

    Pheophorbide a may regulate Jasmonate signaling during dark-induced senescence

    Full text link
    Chlorophyll degradation is one of the most visible signs of leaf senescence. During senescence, chlorophyll is degraded in the multistep pheophorbide a oxygenase (PAO)/phyllobilin pathway. This pathway is tightly regulated at the transcriptional level, allowing coordinated and efficient remobilization of nitrogen toward sink organs. Using a combination of transcriptome and metabolite analyses during dark-induced senescence of Arabidopsis (Arabidopsis thaliana) mutants deficient in key steps of the PAO/phyllobilin pathway, we show an unanticipated role for one of the pathway intermediates, i.e. pheophorbide a Both jasmonic acid-related gene expression and jasmonic acid precursors specifically accumulated in pao1, a mutant deficient in PAO. We propose that pheophorbide a, the last intact porphyrin intermediate of chlorophyll degradation and a unique pathway "bottleneck," has been recruited as a signaling molecule of chloroplast metabolic status. Our work challenges the assumption that chlorophyll breakdown is merely a result of senescence, and proposes that the flux of pheophorbide a through the pathway acts in a feed-forward loop that remodels the nuclear transcriptome and controls the pace of chlorophyll degradation in senescing leaves

    Evolution of chlorophyll degradation is associated with plant transition to land

    Get PDF
    Colonization of land by green plants (Viridiplantae) some 500 million years ago was made possible by large metabolic and biochemical adaptations. Chlorophyll, the central pigment of photosynthesis, is highly photo-active. In order to mitigate deleterious effects of pigment accumulation, some plants have evolved a coordinated pathway to deal with chlorophyll degradation end-products, so-called phyllobilins. This pathway has been so far mostly unravelled in Arabidopsis thaliana. Here, large-scale comparative phylogenomic coupled to an innovative biochemical characterization strategy of phyllobilins allow a better understanding of how such a pathway appeared in Viridiplantae. Our analysis reveals a stepwise evolution of the canonical pheophorbide a monooxygenase/phyllobilin pathway. It appears to have evolved gradually, first in chlorophyte's chloroplasts, to ensure multicellularity by detoxifying chlorophyll catabolites, and in charophytes outside chloroplasts to allow adaptation of embryophytes to land. At least six out of the eight genes involved in the pathway were already present in the last common ancestor of green plants. This strongly suggests parallel evolution of distinct enzymes catalysing similar reactions in various lineages, particularly for the dephytylation step. Together, our study suggests that chlorophyll detoxification accompanied the transition from water to land, and was therefore of great importance for plant diversification

    HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.

    Get PDF
    Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth
    corecore