124 research outputs found
The contributions of fibre atrophy, fibre loss, in situ specific force and voluntary activation to weakness in sarcopenia
The contributions of fibre atrophy, fibre loss, in situ specific force and voluntary activation to weakness in sarcopenia remain unclear. To investigate, forty older (20 women; age 72±4yrs) and 31 younger adults (15 women, age 22±3yrs) completed measurements. The knee extensor maximal voluntary torque (MVC) was measured as well as voluntary activation, patella tendon moment arm length, muscle volume and fascicle architecture to estimate in situ specific force. Fibre cross-sectional area (FCSA), fibre numbers and connective tissue contents were also estimated from vastus lateralis biopsies. The MVC, quadriceps volume and specific force were 39%, 28% and 17% lower, respectively, in old compared with young, but voluntary activation was not different. The difference in muscle size was due in almost equal proportions to lower type II FCSA and fewer fibres. Five years later (n=23) the MVC, muscle volume and voluntary activation in old decreased an additional 12%, 6% and 4%, respectively, but there was no further change in specific force. Conclusions: in situ specific force declines relatively early in older age and reduced voluntary activation occurs later, but the overall weakness in sarcopenia is mainly related to loss of both type I and II fibres and type II fibre atrophy
An improved closed system for continuous measurement of photosynthesis, respiration and transpiration
Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men
This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordShort successive periods of muscle disuse, due to injury or illness, can contribute significantly to the loss of muscle mass with aging (sarcopenia). It has been suggested that increasing the protein content of the diet may be an effective dietary strategy to attenuate muscle disuse atrophy. We hypothesized that protein supplementation twice daily would preserve muscle mass during a short period of limb immobilization. Twenty-three healthy older (69 ± 1 y) men were subjected to 5 d of one-legged knee immobilization by means of a full-leg cast with (PRO group; n = 11) or without (CON group; n = 12) administration of a dietary protein supplement (20.7 g of protein, 9.3 g of carbohydrate, and 3.0 g of fat) twice daily. Two d prior to and immediately after the immobilization period, single-slice computed tomography scans of the quadriceps and single-leg 1 repetition maximum strength tests were performed to assess muscle cross-sectional area (CSA) and leg muscle strength, respectively. Additionally, muscle biopsies were collected to assess muscle fiber characteristics as well as mRNA and protein expression of selected genes. Immobilization decreased quadriceps' CSAs by 1.5 ± 0.7% (P < 0.05) and 2.0 ± 0.6% (P < 0.05), and muscle strength by 8.3 ± 3.3% (P < 0.05) and 9.3 ± 1.6% (P < 0.05) in the CON and PRO groups, respectively, without differences between groups. Skeletal muscle myostatin, myogenin, and muscle RING-finger protein-1 (MuRF1) mRNA expression increased following immobilization in both groups (P < 0.05), whereas muscle atrophy F-box/atrogen-1 (MAFBx) mRNA expression increased in the PRO group only (P < 0.05). In conclusion, dietary protein supplementation (∼20 g twice daily) does not attenuate muscle loss during short-term muscle disuse in healthy older men. This trial was registered at clinicaltrials.gov as NCT01588808
Age-period-cohort analysis for trends in body mass index in Ireland
Background: Obesity is a growing problem worldwide and can often result in a variety of negative health outcomes. In this study we aim to apply partial least squares (PLS) methodology to estimate the separate effects of age, period and cohort on the trends in obesity as measured by body mass index (BMI). Methods. Using PLS we will obtain gender specific linear effects of age, period and cohort on obesity. We also explore and model nonlinear relationships of BMI with age, period and cohort. We analysed the results from 7,796 men and 10,220 women collected through the SLAN (Surveys of Lifestyle, attitudes and Nutrition) in Ireland in the years 1998, 2002 and 2007. Results: PLS analysis revealed a positive period effect over the years. Additionally, men born later tended to have lower BMI (-0.026 kg·m-2 yr-1, 95% CI: -0.030 to -0.024) and older men had in general higher BMI (0.029 kg·m -2 yr-1, 95% CI: 0.026 to 0.033). Similarly for women, those born later had lower BMI (-0.025 kg·m-2 yr-1, 95% CI: -0.029 to -0.022) and older women in general had higher BMI (0.029 kg·m-2 yr-1, 95% CI: 0.025 to 0.033). Nonlinear analyses revealed that BMI has a substantial curvilinear relationship with age, though less so with birth cohort. Conclusion: We notice a generally positive age and period effect but a slightly negative cohort effect. Knowing this, we have a better understanding of the different risk groups which allows for effective public intervention measures to be designed and targeted for these specific population subgroups
The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction
Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal
muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised
that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12
myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube
hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast
culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation
when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature
myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I
MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area
in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa
and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing
protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to
ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol
evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated
impaired myotube growth observed during glucose restriction
Using Light to Improve Commercial Value
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality
Experimental assessment of recycled diesel spill-contaminated domestic wastewater treated by reed beds for irrigation of sweet peppers
The aim of this experimental study is to assess if urban wastewater treated by ten different greenhouse-based sustainable wetland systems can be recycled to irrigate Capsicum annuum L. (Sweet Pepper; California Wonder) commercially grown either in compost or sand within a laboratory environment. The design variables were aggregate diameter, contact time, resting time and chemical oxygen demand. The key objectives were to assess: (i) the suitability of different treated (recycled) wastewaters for irrigation; (ii) response of peppers in terms of growth when using recycled wastewater subject to different growth media and hydrocarbon contamination; and (iii) the economic viability of different experimental set-ups in terms of marketable yield. Ortho-phosphate-phosphorus, ammonia-nitrogen, potassium and manganese concentrations in the irrigation water considerably exceeded the corresponding water quality thresholds. A high yield in terms of economic return (marketable yield expressed in monetary value) was linked to raw wastewater and an organic growth medium, while the plants grown in organic medium and wetlands of large aggregate size, high contact and resting times, diesel-spill contamination and low inflow loading rate produced the best fruits in terms of their dimensions and fresh weights, indicating the role of diesel in reducing too high nitrogen concentrations
Nutrition for special populations: young, female, and masters athletes
Athletics provides many benefits to people, including regular physical activity, social interaction, and the development of self-identity and self-esteem. How the International Association of Athletics Federations supports a positive lifelong connection to athletic pursuits for both men and women is fundamental to ongoing participation in track-and-field events. Responsibility for the provision of appropriate nutrition care to young, female, and/or masters athletes is shared among the sport’s leaders, coaches, parents, teachers, and the athletes themselves. This review incorporates aspects of physiology, psychology, training science, and sociology to describe our current understanding of the nutrition priorities for these special population athletes
Healthy ageing, appetite, frailty and sarcopenia: a brief overview
In many societies the population is getting older, such that in some western countries it is expected that those over 80 years of age will make up 30% of the population (1-2). In the modern era, due to improved health and better medical support/treatment, many people may spend as many years retired as they did working. Unfortunately, as one ages, the burden of disease increases (2.9 million people in England have >1 long-term condition), longevity is compromised by disability; therefore the drive must be to add life to years rather than just years to life. When people live long, the media often asks “what is the success associated with longevity or successful (healthy) ageing?” Is it a success to live a long life, or is successful ageing the key? Healthy ageing, is defined as a state, where the effect of frailty, sarcopenia, disease and disability have been minimised. Farpour et al (3) discuss the effect that aging has on Iranian people, and Liang et al discuss the findings of a systematic review looking at traditional Chinese’ medicine and subhealth (4), which could be aligned to prefrailty.
In 2015 the WHO defined Health as “a state of complex physical, mental and social well-being and not merely absence of disease” (5). Healthy ageing was also defined as “the process of developing and maintaining the functional ability that enables well-being in older age”. Rowe and Khan (1987) commented that to age successfully one must avoid disease, remain engaged with life and maintain a high level of physical and cognitive function (6). Healthy ageing is, therefore, a complex interplay between physical, cognitive and social factors, and perhaps is dependent on how we individually respond to the internal and external forces at play (table 1).
The definition of what is normal and what is abnormal is fraught with difficulty; what is acceptable and what is not? There is a risk that where normative parameters (for younger adults) are exceeded there will be a medicalisation of “older age”!
What ultimately matters is the preservation of functional ability, which the majority (75%) of very old people are able to do and live relatively independent lives (6). This paper will discuss the interdependency between healthy ageing, appetite, frailty and sarcopenia and their impact on functional ability
- …
