1,100 research outputs found
Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped Divergences
In this article, we present a graph-based method using a cubic template for
volumetric segmentation of vertebrae in magnetic resonance imaging (MRI)
acquisitions. The user can define the degree of deviation from a regular cube
via a smoothness value Delta. The Cube-Cut algorithm generates a directed graph
with two terminal nodes (s-t-network), where the nodes of the graph correspond
to a cubic-shaped subset of the image's voxels. The weightings of the graph's
terminal edges, which connect every node with a virtual source s or a virtual
sink t, represent the affinity of a voxel to the vertebra (source) and to the
background (sink). Furthermore, a set of infinite weighted and non-terminal
edges implements the smoothness term. After graph construction, a minimal
s-t-cut is calculated within polynomial computation time, which splits the
nodes into two disjoint units. Subsequently, the segmentation result is
determined out of the source-set. A quantitative evaluation of a C++
implementation of the algorithm resulted in an average Dice Similarity
Coefficient (DSC) of 81.33% and a running time of less than a minute.Comment: 23 figures, 2 tables, 43 references, PLoS ONE 9(4): e9338
Template-Cut: A Pattern-Based Segmentation Paradigm
We present a scale-invariant, template-based segmentation paradigm that sets
up a graph and performs a graph cut to separate an object from the background.
Typically graph-based schemes distribute the nodes of the graph uniformly and
equidistantly on the image, and use a regularizer to bias the cut towards a
particular shape. The strategy of uniform and equidistant nodes does not allow
the cut to prefer more complex structures, especially when areas of the object
are indistinguishable from the background. We propose a solution by introducing
the concept of a "template shape" of the target object in which the nodes are
sampled non-uniformly and non-equidistantly on the image. We evaluate it on
2D-images where the object's textures and backgrounds are similar, and large
areas of the object have the same gray level appearance as the background. We
also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning
purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference
Pituitary Adenoma Volumetry with 3D Slicer
In this study, we present pituitary adenoma volumetry using the free and open source medical image computing platform for biomedical research: (3D) Slicer. Volumetric changes in cerebral pathologies like pituitary adenomas are a critical factor in treatment decisions by physicians and in general the volume is acquired manually. Therefore, manual slice-by-slice segmentations in magnetic resonance imaging (MRI) data, which have been obtained at regular intervals, are performed. In contrast to this manual time consuming slice-by-slice segmentation process Slicer is an alternative which can be significantly faster and less user intensive. In this contribution, we compare pure manual segmentations of ten pituitary adenomas with semi-automatic segmentations under Slicer. Thus, physicians drew the boundaries completely manually on a slice-by-slice basis and performed a Slicer-enhanced segmentation using the competitive region-growing based module of Slicer named GrowCut. Results showed that the time and user effort required for GrowCut-based segmentations were on average about thirty percent less than the pure manual segmentations. Furthermore, we calculated the Dice Similarity Coefficient (DSC) between the manual and the Slicer-based segmentations to proof that the two are comparable yielding an average DSC of 81.97±3.39%
An Experimental and Numerical Study on Tactile Neuroimaging: A Novel Minimally Invasive Technique for Intraoperative Brain Imaging
This is the peer reviewed version of the following article:
Moslem Sadeghi-Goughari, Yanjun Qian, Soo Jeon, Sohrab Sadeghi and Hyock-Ju Kwon, “An Experimental and Numerical Study on Tactile Neuroimaging: A Novel Minimally Invasive Technique for Intraoperative Brain Imaging,” accepted to The International Journal of Medical Robotics and Computer Assisted Surgery which has been published in final form at: https://doi.org/10.1002/rcs.1893. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Background
The success of tumor neurosurgery is highly dependent on the ability to accurately localize the operative target, which may be shifted during the operation. Performing an intraoperative brain imaging is crucial in minimally invasive neurosurgery to detect the effect of brain shift on the tumor’s location, and to maximize the efficiency of tumor resection.
Method
The major objective of this research is to introduce the tactile neuroimaging as a novel minimally invasive technique for intraoperative brain imaging. To investigate the feasibility of the proposed method, an experimental and numerical study was first performed on silicone phantoms mimicking the brain tissue with a tumor. Then the study was extended to a clinical model with the meningioma tumor.
Results
The stress distribution on the brain surface has high potential to intraoperatively localize the tumor.
Conclusion
Results suggest that tactile neuroimaging can be used to provide a non-invasive, and real-time intraoperative data on tumor’s features.Natural Sciences and Engineering Research Council || RGPIN/2015-05273, RGPIN/2015-04118, RGPAS/354703-201
GBM Volumetry using the 3D Slicer Medical Image Computing Platform
Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm
Vertebral body segmentation with GrowCut: Initial experience, workflow and practical application
In this contribution, we used the GrowCut segmentation algorithm publicly
available in three-dimensional Slicer for three-dimensional segmentation of
vertebral bodies. To the best of our knowledge, this is the first time that the
GrowCut method has been studied for the usage of vertebral body segmentation.
In brief, we found that the GrowCut segmentation times were consistently less
than the manual segmentation times. Hence, GrowCut provides an alternative to a
manual slice-by-slice segmentation process.Comment: 10 page
- …
