2,819 research outputs found
New symmetries for the Ablowitz-Ladik hierarchies
In the letter we give new symmetries for the isospectral and non-isospectral
Ablowitz-Ladik hierarchies by means of the zero curvature representations of
evolution equations related to the Ablowitz-Ladik spectral problem. Lie
algebras constructed by symmetries are further obtained. We also discuss the
relations between the recursion operator and isospectral and non-isospectral
flows. Our method can be generalized to other systems to construct symmetries
for non-isospectral equations.Comment: 11 page
Modeling of hierarchical cathode for lithium air batteries with aqueous electrolyte
Lithium air batteries show a great promise as energy storage devices due to their high energy densities. Meanwhile, the exploiting of renewable energy sources stimulates the development of the batteries. However, currently, there are numerous scientific and technical challenges that must be addressed before commercialization. Recently, our lab has demonstrated a new hierarchical and nanostructured air cathode which shows high activity. In this work, a new mathematical model for a hierarchical and nanostructured air cathode has been established. The model is implemented in the commercial software COMSOL and verified with the existing experimental data. Furthermore, the effects of different air cathode structure parameters have been investigated. The gas diffusion pore width plays a dual role on the cell performance and an optimal pore width has been found. The backing paper thickness has minor influence on the cell performance. Finally, the cell performance increases with the increase of the length and density of carbon nanotube assays (CNTAs) under sufficient oxygen circumstance. However, when the oxygen transport is limited, the increase of the length and density of CNTAs has no significant effect. The model developed in this work can be used as a tool to predict and optimize the structure of Li-air cathode
Modeling Eridani and asteroseismic tests of element diffusion
Taking into account the helium and metal diffusion, we explore the possible
evolutionary status and perform seismic analysis of MOST target: the star
Eridani. We adopt the different input parameters to construct the
models by fitting the available observational constraints: e.g., ,
, , . From computation, we obtain the average large spacings of
Eridani about Hz. The age of the diffused models has
been found to be about 1 Gyr, which is younger than one determined previously
by models without diffusion. We found that the effect of pure helium diffusion
on the internal structure of the young low-mass star is slight, but the metal
diffusion influence is obvious. The metal diffusion leads the models to have
much higher temperature in the radiation interior, correspondingly the higher
sound speed in the interior of the model, thereby the larger frequency and
spacings.Comment: 16 pages, 4 figures, accepted for publication in ChjA
Construction of Compactly Supported Refinable Componentwise Polynomial Functions in ℝ
We provide a sufficient condition for constructing a class of
compactly supported refinable functions with componentwise polynomial property in ℝ2. An iteration algorithm is developed to compute the polynomial on each component of the functions' support. Finally, two examples for constructing the symmetric refinable componentwise polynomial functions are given
New insights from GWAS for the cleft palate among han Chinese population
Genome wide association studies (GWAS) already have identified tens of susceptible loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). However, whether these loci associated with nonsyndromic cleft palate only (NSCPO) remains unknown. In this study, we replicated 38 SNPs (Single nucleotide polymorphisms) which has the most significant p values in published GWASs, genotyping by using SNPscan among 144 NSCPO trios from Western Han Chinese. We performed the transmission disequilibrium test (TDT) on individual SNPs and gene-gene (GxG) interaction analyses on the family data; Parent-of-Origin effects were assessed by separately considering transmissions from heterozygous fathers versus heterozygous mothers to affected offspring. Allelic TDT results showed that T allele at rs742071 (PAX7) (p=0.025, ORtransmission=3.00, 95%CI: 1.09-8.25) and G allele at rs2485893 (10kb 3? of SYT14) were associated with NSCPO (p=0.0036, ORtransmission= 0.60, 95%CI: 0.42-0.85). Genotypic TDT based on 3 pseudo controls further confirmed that rs742071 (p-value=0.03, ORtransmission=3.00, 95%CI: 1.09-8.25) and rs2485893 were associated with NSCPO under additive model (p-value= 0.02, ORtransmission= 0.66, 95%CI: 0.47-0.92). Genotypic TDT for epistatic interactions showed that rs4844913 (37kb 3? of DIEXF) interacted with rs11119388 (SYT14) (p-value=1.80E-08) and rs6072081 (53kb 3? of MAFB) interacted with rs6102085 (33kb 3? of MAFB) (p-value=3.60E-04) for NSCPO, suggesting they may act in the same pathway in the etiology of NSCPO. In this study, we found that rs742071 and rs2485893 were associated NSCPO from Han Chinese population; also, interactions of rs4844913:rs11119388 and rs6072081:rs6102085 for NSCPO were identified, gene-gene interactions have been proposed as a potential source of the remaining heritability, these findings provided new insights of the previous GWAS
Dynamics of wetlands and their effects on carbon emissions in China coastal region - Case study in Bohai Economic Rim
Wetlands are one of the largest carbon sinks in the world due to their large carbon storage, potential for carbon sequestration in peat formation, sediment deposition and plant biomass. However, rapid economic development is causing changes to wetland carbon storage. China has participated in the implementation of the Kyoto Protocol and is decreasing its carbon emissions. Analyzing the carbon changes that are caused by wetland dynamics may provide some insights regarding decreasing carbon emissions. Therefore, wetland data from 1985, 1995 and 2005 were extracted from remote sensing images. Using spatial analysis and statistics, we determined that the water body area continued to increase, whereas the swamp, floodplain and shallow areas tended to decrease during the period from 1985 to 2005. Those changes caused wetland carbon stock to decrease. The conversion of other land use categories to wetland was the primary cause of carbon stock loss. Therefore, it is more beneficial for China to decrease per capita carbon emissions by decreasing carbon emissions from the conversion of other land use categories to wetlands. (C) 2013 Elsevier Ltd. All rights reserved.Wetlands are one of the largest carbon sinks in the world due to their large carbon storage, potential for carbon sequestration in peat formation, sediment deposition and plant biomass. However, rapid economic development is causing changes to wetland carbon storage. China has participated in the implementation of the Kyoto Protocol and is decreasing its carbon emissions. Analyzing the carbon changes that are caused by wetland dynamics may provide some insights regarding decreasing carbon emissions. Therefore, wetland data from 1985, 1995 and 2005 were extracted from remote sensing images. Using spatial analysis and statistics, we determined that the water body area continued to increase, whereas the swamp, floodplain and shallow areas tended to decrease during the period from 1985 to 2005. Those changes caused wetland carbon stock to decrease. The conversion of other land use categories to wetland was the primary cause of carbon stock loss. Therefore, it is more beneficial for China to decrease per capita carbon emissions by decreasing carbon emissions from the conversion of other land use categories to wetlands. (C) 2013 Elsevier Ltd. All rights reserved
- …
