14,505 research outputs found
Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Based on unified theory of electromagnetic interactions and gravitational
interactions, the non-relativistic limit of the equation of motion of a charged
Dirac particle in gravitational field is studied. From the Schrodinger equation
obtained from this non-relativistic limit, we could see that the classical
Newtonian gravitational potential appears as a part of the potential in the
Schrodinger equation, which can explain the gravitational phase effects found
in COW experiments. And because of this Newtonian gravitational potential, a
quantum particle in earth's gravitational field may form a gravitationally
bound quantized state, which had already been detected in experiments. Three
different kinds of phase effects related to gravitational interactions are
discussed in this paper, and these phase effects should be observable in some
astrophysical processes. Besides, there exists direct coupling between
gravitomagnetic field and quantum spin, radiation caused by this coupling can
be used to directly determine the gravitomagnetic field on the surface of a
star.Comment: 12 pages, no figur
Mass formulae and strange quark matter
We have derived the popularly used parametrization formulae for quark masses
at low densities and modified them at high densities within the
mass-density-dependent model. The results are applied to investigate the lowest
density for the possible existence of strange quark matter at zero temperature.Comment: 9 pages, LATeX with ELSART style, one table, no figures. Improvement
on the derivation of qark mass formula
Recommended from our members
Ecological thresholds and large carnivores conservation: Implications for the Amur tiger and leopard in China
The ecological threshold concept describes how changes in one or more factors at thresholds can result in a large shift in the state of an ecosystem. This concept focuses attention on limiting factors that affect the tolerance of systems or organisms and changes in them. Accumulating empirical evidence for the existence of ecological thresholds has created favorable conditions for practical application to wildlife conservation. Applying the concept has the potential to enhance conservation of two large carnivores, Amur tiger and leopard, and the knowledge gained could guide the construction of a proposed national park. In this review, ecological thresholds that result from considering a paradigm of bottom-up control were evaluated for their potential to contribute to the conservation of Amur tiger and leopard. Our review highlights that large carnivores, as top predators, are potentially affected by ecological thresholds arising from changes in climate (or weather), habitat, vegetation, prey, competitors, and anthropogenic disturbances. What's more, interactions between factors and context dependence need to be considered in threshold research and conservation practice, because they may amplify the response of ecosystems or organisms to changes in specific drivers. Application of the threshold concept leads to a more thorough evaluation of conservation needs, and could be used to guide future Amur tiger and leopard research and conservation in China. Such application may inform the conservation of other large carnivores worldwide
Gear optimization
The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future
Signatures of a Noise-Induced Quantum Phase Transition in a Mesoscopic Metal Ring
We study a mesoscopic ring with an in-line quantum dot threaded by an
Aharonov-Bohm flux. Zero-point fluctuations of the electromagnetic environment
capacitively coupled to the ring, with spectral density, can
suppress tunneling through the dot, resulting in a quantum phase transition
from an unpolarized to a polarized phase. We show that robust signatures of
such a transition can be found in the response of the persistent current in the
ring to the external flux as well as to the bias between the dot and the arm.
Particular attention is paid to the experimentally relevant cases of ohmic
() and subohmic () noise.Comment: 4 pages, 4 figures, realistic parameters estimated, reference update
Energy and Accuracy Trade-Offs in Accelerometry-Based Activity Recognition
Driven by real-world applications such as fitness, wellbeing and healthcare, accelerometry-based activity recognition has been widely studied to provide context-awareness to future pervasive technologies. Accurate recognition and energy efficiency are key issues in enabling long-term and unobtrusive monitoring. While the majority of accelerometry-based activity recognition systems stream data to a central point for processing, some solutions process data locally on the sensor node to save energy. In this paper, we investigate the trade-offs between classification accuracy and energy efficiency by comparing on- and off-node schemes. An empirical energy model is presented and used to evaluate the energy efficiency of both systems, and a practical case study (monitoring the physical activities of office workers) is developed to evaluate the effect on classification accuracy. The results show a 40% energy saving can be obtained with a 13% reduction in classification accuracy, but this performance depends heavily on the wearer’s activity
In-medium Properties of as a KN structure in Relativistic Mean Field Theory
The properties of nuclear matter are discussed with the relativistic
mean-field theory (RMF).Then, we use two models in studying the in-medium
properties of : one is the point-like in the usual RMF and
the other is a KN structure for the pentaquark. It is found that the
in-medium properties of are dramatically modified by its internal
structure. The effective mass of in medium is, at normal nuclear
density, about 1030 MeV in the point-like model, while it is about 1120 MeV in
the model of KN pentaquark. The nuclear potential depth of in
the KN model is approximately -37.5 MeV, much shallower than -90 MeV in
the usual point-like RMF model.Comment: 8 pages, 5 figure
- …
