561 research outputs found

    The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling

    Get PDF
    Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon

    High levels of interferon alpha in the sera of children with dengue virus infection

    Get PDF
    We measured the levels of interferon alpha (IFN alpha) in the sera of Thai children hospitalized with dengue hemorrhagic fever (DHF) or dengue fever (DF) to examine the role of IFN alpha in dengue virus infections of humans. The percentage of patients who had detectable levels of IFN alpha ( \u3e or = 3 U/ml) was higher in patients with DHF (80%, P \u3c 0.001) and in patients with DF (60%, P \u3c 0.001) than in healthy Thai children (7%). The levels of IFN alpha were higher in patients with DHF and in patients with DF on the first few days after the onset of fever than in healthy Thai children. The average levels of IFN alpha in patients with DHF were high two days before defervescence, decreasing gradually until the day of defervescence. There was a subset of patients with DHF who had increasing levels of IFN alpha after defervescence. However, the levels of IFN alpha in patients with DF were not high after fever subsided. The levels of IFN alpha were not different among children with DHF grades 1, 2 and 3. Among patients with DHF, T lymphocytes were activated to a higher degree in high IFN alpha producers than in low IFN alpha producers. These results indicate that similarly high levels of IFN alpha are produced in vivo during the acute stages of DHF and DF, and that high levels of IFN alpha remain after fever subsides in some patients with DHF, but not in patients with DF

    Transplacental Chikungunya Virus Antibody Kinetics, Thailand

    Get PDF
    Antibodies to chikungunya virus were detected by hemagglutination-inhibition assay in 33.6% of 2,000 infants' cord sera at delivery. Follow-up of 24 seropositive infants showed that the half-life of antibody persistence was 35.5 days. Chikungunya virus infection is common in Thailand, and routine use of diagnostic assays is needed

    Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement

    Get PDF
    This paper examines the interplay of the effect of cross immunity and antibody-dependent enhancement (ADE) in multistrain diseases. Motivated by dengue fever, we study a model for the spreading of epidemics in a population with multistrain interactions mediated by both partial temporary cross immunity and ADE. Although ADE models have previously been observed to cause chaotic outbreaks, we show analytically that weak cross immunity has a stabilizing effect on the system. That is, the onset of disease fluctuations requires a larger value of ADE with small cross immunity than without. However, strong cross immunity is shown numerically to cause oscillations and chaotic outbreaks even for low values of ADE. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3270261

    Molecular evolution of dengue type 2 virus in Thailand

    Get PDF
    Dengue is a mosquito-borne viral infection that in recent years has become a major international public health concern. Dengue hemorrhagic fever (DHF), first recognized in Southeast Asia in the 1950s, is today a leading cause of childhood death in many countries. The pathogenesis of this illness is poorly understood, mainly because there are no laboratory or animal models of disease. We have studied the genetic relationships of dengue viruses of serotype 2, one of four antigenically distinct dengue virus groups, to determine if viruses obtained from cases of less severe dengue fever (DF) have distinct evolutionary origins from those obtained from DHF cases. A very large number (73) of virus samples from patients with DF or DHF in two locations in Thailand (Bangkok and Kamphaeng Phet) were compared by sequence analysis of 240 nucleotides from the envelope/nonstructural protein 1 (E/NS1) gene junction of the viral genome. Phylogenetic trees generated with these data have been shown to reflect long-term evolutionary relationships among strains. The results suggest that 1) many different virus variants may circulate simultaneously in Thailand, thus reflecting the quasispecies nature of these RNA viruses, in spite of population immunity; 2) viruses belonging to two previously distinct genotypic groups have been isolated from both DF and DHF cases, supporting the view that they arose from a common progenitor and share the potential to cause severe disease; and 3) viruses associated with the potential to cause DHF segregate into what is now one, large genotypic group and they have evolved independently in Southeast Asia for some time

    Diversity and Origin of Dengue Virus Serotypes 1, 2, and 3, Bhutan

    Get PDF
    To determine the serotype and genotype of dengue virus (DENV) in Bhutan, we conducted phylogenetic analyses of complete envelope gene sequences. DENV-2 (Cosmopolitan genotype) predominated in 2004, and DENV-3 (genotype III) predominated in 2005–2006; these viruses were imported from India. Primary dengue infections outnumbered secondary infections, suggesting recent emergence
    corecore