1,763 research outputs found
Three Dimensional Relativistic Electromagnetic Sub-cycle Solitons
Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were
observed in 3D Particle-in-Cell simulations of an intense short laser pulse
propagation in an underdense plasma. Their structure resembles that of an
oscillating electric dipole with a poloidal electric field and a toroidal
magnetic field that oscillate in-phase with the electron density with frequency
below the Langmuir frequency. On the ion time scale the soliton undergoes a
Coulomb explosion of its core, resulting in ion acceleration, and then evolves
into a slowly expanding quasi-neutral cavity.Comment: 5 pages, 6 figures;
http://www.ile.osaka-u.ac.jp/research/TSI/Timur/soliton/index.htm
Electronic structure of the strongly hybridized ferromagnet CeFe2
We report on results from high-energy spectroscopic measurements on CeFe2, a
system of particular interest due to its anomalous ferromagnetism with an
unusually low Curie temperature and small magnetization compared to the other
rare earth-iron Laves phase compounds. Our experimental results indicate very
strong hybridization of the Ce 4f states with the delocalized band states,
mainly the Fe 3d states. In the interpretation and analysis of our measured
spectra, we have made use of two different theoretical approaches: The first
one is based on the Anderson impurity model, with surface contributions
explicitly taken into account. The second method consists of band-structure
calculations for bulk CeFe2. The analysis based on the Anderson impurity model
gives calculated spectra in good agreement with the whole range of measured
spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably
reduced at the surface, resulting in even stronger hybridization in the bulk
than previously thought. The band-structure calculations are ab initio
full-potential linear muffin-tin orbital calculations within the
local-spin-density approximation of the density functional. The Ce 4f electrons
were treated as itinerant band electrons. Interestingly, the Ce 4f partial
density of states obtained from the band-structure calculations also agree well
with the experimental spectra concerning both the 4f peak position and the 4f
bandwidth, if the surface effects are properly taken into account. In addition,
results, notably the partial spin magnetic moments, from the band-structure
calculations are discussed in some detail and compared to experimental findings
and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200
59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O
We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water
intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting
transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample
without superconductivity. We obtained a magnetic phase diagram of T_c and the
magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR
transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase.
The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below
T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an
unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at
low temperatures increases with the increase of nu_3 though the optimal
nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity
emerges close to the magnetic instability. T_c is suppressed near the phase
boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum
critical point.Comment: 4 pages, 5 figure
Splitting of the Dipole and Spin-Dipole Resonances
Cross sections for the 90,92,94Zr(p,n) reactions were measured at energies of
79.2 and 119.4 MeV. A phenomenological model was developed to describe the
variation with bombarding energy of the position of the L=1 peak observed in
these and other (p,n) reactions. The model yields the splitting between the
giant dipole and giant spin dipole resonances. Values of these splittings are
obtained for isotopes of Zr and Sn and for 208Pb.Comment: 14 pages, 4 figure
Ground and excited state communication within a ruthenium containing benzimidazole metallopolymer
Emission spectroscopy and electrochemistry has been used to probe the electronic communication between adjacent metal centres and the conjugated backbone within a family of imidazole based metallopolymer, [Ru(bpy)2(PPyBBIM)n]2+, in the ground and excited states, bpy is 2,2’-bipyridyl, PPyBBIM is poly[2-(2-pyridyl)-bibenzimidazole] and n = 3, 10 or 20. Electronic communication in the excited state is not efficient and upon optical excitation dual emission is observed, i.e., both the polymer backbone and the metal centres emit. Coupling the ruthenium moiety to the imidazole backbone results in a red shift of approximately 50 nm in the emission spectrum. Luminescent lifetimes of up to 120 ns were also recorded. Cyclic voltammetry was also utilized to illustrate the distance dependence of the electron hopping rates between adjacent metal centres with ground state communication reduced by up to an order of magnitude compared to previously reported results when the metal to backbone ratio was not altered. DCT and De values of up to 3.96 x 10-10 and 5.32 x 10-10 cm2S-1 were observed with corresponding conductivity values of up to 2.34 x 10-8 Scm-1
A system of relational syllogistic incorporating full Boolean reasoning
We present a system of relational syllogistic, based on classical
propositional logic, having primitives of the following form:
Some A are R-related to some B;
Some A are R-related to all B;
All A are R-related to some B;
All A are R-related to all B.
Such primitives formalize sentences from natural language like `All students
read some textbooks'. Here A and B denote arbitrary sets (of objects), and R
denotes an arbitrary binary relation between objects. The language of the logic
contains only variables denoting sets, determining the class of set terms, and
variables denoting binary relations between objects, determining the class of
relational terms. Both classes of terms are closed under the standard Boolean
operations. The set of relational terms is also closed under taking the
converse of a relation. The results of the paper are the completeness theorem
with respect to the intended semantics and the computational complexity of the
satisfiability problem.Comment: Available at
http://link.springer.com/article/10.1007/s10849-012-9165-
ISO continuum observations of quasars at z=1-4 I.Spectral energy distributions of quasars from the UV to far-infrared
Eight luminous quasars with at z = 1.4 - 3.7 have been
observed in the mid- and far-infrared using ISO. All the quasars have been
detected in the mid-infrared bands of ISOCAM, while no far-infrared detections
have been made with ISOPHOT. Supplementing ISO observations with photometry in
the optical and near-infrared made from the ground mostly within 17 months
after the ISO observations, SEDs (Spectral Energy Distributions) from the UV to
far-infrared have been obtained. SEDs (Spectral Energy Distributions) from the
UV to far-infrared have been obtained while supplementing ISO observations with
photometry in the optical and near-infrared made from the ground within 17
months. The SEDs are compared with the MED (Mean spectral Energy Distributions)
of low-redshift quasars with . It is shown that our
far-infrared observations were limited by confusion noise due to crowded
sources.Comment: 9 pages, 3 figures: accepted for publication in Astronomy and
Astrophysic
Global well-posedness of the Kirchhoff equation and Kirchhoff systems
This article is devoted to review the known results on global well-posedness
for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with
small data. Similar results will be obtained for the initial-boundary value
problems in exterior domains with compact boundary. Also, the known results on
large data problems will be reviewed together with open problems.Comment: arXiv admin note: text overlap with arXiv:1211.300
Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes
Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is
studied by means of a modified spin-wave theory. We consider the second-order
process, where a nuclear spin flip induces virtual spin waves which are then
scattered thermally via the four-magnon exchange interaction, as well as the
first-order process, where a nuclear spin directly interacts with spin waves
via the hyperfine interaction. We point out a possibility of the three-magnon
relaxation process predominating over the Raman one and suggest model
experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004
- …
