86 research outputs found
Recommended from our members
European mtDNA Variants Are Associated With Differential Responses to Cisplatin, an Anticancer Drug: Implications for Drug Resistance and Side Effects.
Background: Cisplatin, a powerful antitumor agent, causes formation of DNA adducts, and activation of apoptotic pathways. Presently, cisplatin resistance develops in up to 70% of patients but the underlying molecular mechanism(s) are unclear and there are no markers to determine which patients will become resistant. Mitochondria play a significant role not only in energy metabolism but also retrograde signaling (mitochondria to nucleus) that modulates inflammation, complement, and apoptosis pathways. Maternally inherited mitochondrial (mt) DNA can be classified into haplogroups representing different ethnic populations that have diverse susceptibilities to diseases and medications. Methods: Transmitochondrial cybrids, where all cell lines possess identical nuclear genomes but either the H (Southern European) or J (Northern European) mtDNA haplogroups, were treated with cisplatin and analyzed for differential responses related to viability, oxidative stress, and expression levels of genes associated with cancer, cisplatin-induced nephrotoxicity and resistance, apoptosis and signaling pathways. Results: The cisplatin-treated-J cybrids showed greater loss of cell viability along with lower levels of reactive oxygen species and mitochondrial membrane potential compared to cisplatin-treated-H cybrids. After cisplatin treatment, J cybrids showed increased gene expression of BAX, CASP3, and CYP51A, but lower levels of SFRP1 compared to untreated-J cybrids. The cisplatin-treated-H cybrids had elevated expression of CDKN1A/P21, which has a role in cisplatin toxicity, compared to untreated-H cybrids. The cisplatin-treated H had higher transcription levels of ABCC1, DHRS2/HEP27, and EFEMP1 compared to cisplatin-treated-J cybrids. Conclusions: Cybrid cell lines that contain identical nuclei but either H mtDNA mitochondria or J mtDNA mitochondria respond differently to cisplatin treatments suggesting involvement of the retrograde signaling (from mitochondria to nucleus) in the drug-induced cell death. Varying toxicities and transcription levels of the H vs. J cybrids after cisplatin treatment support the hypothesis that mtDNA variants play a role in the expression of genes affecting resistance and side effects of cisplatin
Developmental or degenerative – NR2E3 gene mutations in two patients with enhanced S cone syndrome
PurposeEnhanced S Cone Syndrome is a rare autosomal recessive disorder characterized clinically by an absence of rod function, a replacement of most L and M cone function by S cone activity (Goldmann-Favre Syndrome) and by variable degrees of retinal degeneration in different families. The causative gene, nuclear receptor subfamily 2, group E, member 3 (NR2E3), controls the developmental sequence for rods and cones. The purpose of this study was to compare the nature and implications of mutations in two subjects with Enhanced S Cone Syndrome who have significantly different degrees of degenerative damage.MethodsA direct sequencing approach was used to identify the mutations. Genomic DNA was amplified from all the exons of NR2E3 and used as a template for sequencing. Of the two families studied, Case 1 is of Persian ethnicity while Case 2 is Brazilian. A total of six individuals within the two families were studied.ResultsCase 1 (original propositus of the syndrome) has the characteristic developmental rod/cone abnormality with large amplitude electroretinogram responses and no retinal degeneration. She was homozygous for a novel mutation, c.[del196–201del6] (p.G66-C67del), which lies entirely within the P-box for this gene. By comparison, Case 2 had Goldmann-Favre Syndrome with retinal degeneration and low electroretinogram signals. She was a compound heterozygote for c.[119–2A>C]+[del194–202del9] (p.N65-C67del), mutations that have been reported previously. Her second mutation overlaps that of Case 1 within the P-box.ConclusionsThe novel in-frame homozygous deletion of Case 1, within the P-box motif of the DNA binding domain, caused a developmental abnormality without retinal degeneration. Case 2, with more traditional Goldmann-Favre Syndrome with retinal degeneration, was a compound heterozygote where one allele had a similar P-box deletion but the other was a splicing defect. Case 1 is the first reported homozygous deletion within the P-box. This is the first report of NR2E3 mutations in a Persian and a Brazilian family
Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study
BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of vision loss in elderly, Caucasian populations. There is strong evidence that mitochondrial dysfunction and oxidative stress play a role in the cell death found in AMD retinas. The purpose of this study was to examine the association of the Caucasian mitochondrial JTU haplogroup cluster with AMD. We also assessed for gender bias and additive risk with known high risk nuclear gene SNPs, ARMS2/LOC387715 (G > T; Ala69Ser, rs10490924) and CFH (T > C; Try402His, rs1061170). METHODS: Total DNA was isolated from 162 AMD subjects and 164 age-matched control subjects located in Los Angeles, California, USA. Polymerase chain reaction (PCR) and restriction enzyme digestion were used to identify the J, U, T, and H mitochondrial haplogroups and the ARMS2-rs10490924 and CFH-rs1061170 SNPs. PCR amplified products were sequenced to verify the nucleotide substitutions for the haplogroups and ARMS2 gene. RESULTS: The JTU haplogroup cluster occurred in 34% (55/162) of AMD subjects versus 15% (24/164) of normal (OR = 2.99; p = 0.0001). This association was slightly greater in males (OR = 3.98, p = 0.005) than the female population (OR = 3.02, p = 0.001). Assuming a dominant effect, the risk alleles for the ARMS2 (rs10490924; p = 0.00001) and CFH (rs1061170; p = 0.027) SNPs were significantly associated with total AMD populations. We found there was no additive risk for the ARMS2 (rs10490924) or CFH (rs1061170) SNPs on the JTU haplogroup background. CONCLUSIONS: There is a strong association of the JTU haplogroup cluster with AMD. In our Southern California population, the ARMS2 (rs10490924) and CFH (rs1061170) genes were significantly but independently associated with AMD. SNPs defining the JTU mitochondrial haplogroup cluster may change the retinal bioenergetics and play a significant role in the pathogenesis of AMD
Therapeutic Potential of the Poly(ADP-ribose) Polymerase Inhibitor Rucaparib for the Treatment of Sporadic Human Ovarian Cancer
Abstract
Here, we investigate the potential role of the PARP inhibitor rucaparib (CO-338, formerly known as AG014699 and PF-01367338) for the treatment of sporadic ovarian cancer. We studied the growth inhibitory effects of rucaparib in a panel of 39 ovarian cancer cell lines that were each characterized for mutation and methylation status of BRCA1/2, baseline gene expression signatures, copy number variations of selected genes, PTEN status, and sensitivity to platinum-based chemotherapy. To study interactions with chemotherapy, we used multiple drug effect analyses and assessed apoptosis, DNA fragmentation, and γH2AX formation. Concentration-dependent antiproliferative effects of rucaparib were seen in 26 of 39 (67%) cell lines and were not restricted to cell lines with BRCA1/2 mutations. Low expression of other genes involved in homologous repair (e.g., BCCIP, BRCC3, ATM, RAD51L1), amplification of AURKA or EMSY, and response to platinum-based chemotherapy was associated with sensitivity to rucaparib. Drug interactions with rucaparib were synergistic for topotecan, synergistic, or additive for carboplatin, doxorubicin or paclitaxel, and additive for gemcitabine. Synergy was most pronounced when rucaparib was combined with topotecan, which resulted in enhanced apoptosis, DNA fragmentation, and γH2AX formation. Importantly, rucaparib potentiated chemotherapy independent of its activity as a single agent. PARP inhibition may be a useful therapeutic strategy for a wider range of ovarian cancers bearing deficiencies in the homologous recombination pathway other than just BRCA1/2 mutations. These results support further clinical evaluation of rucaparib either as a single agent or as an adjunct to chemotherapy for the treatment of sporadic ovarian cancer. Mol Cancer Ther; 12(6); 1002–15. ©2013 AACR.</jats:p
Recommended from our members
Low frequency mitochondrial DNA heteroplasmy SNPs in blood, retina, and [RPE+choroid] of age-related macular degeneration subjects.
PurposeMitochondrial (mt) DNA damage is associated with age-related macular degeneration (AMD) and other human aging diseases. This study was designed to quantify and characterize mtDNA low-frequency heteroplasmy single nucleotide polymorphisms (SNPs) of three different tissues isolated from AMD subjects using Next Generation Sequencing (NGS) technology.MethodsDNA was extracted from neural retina, [RPE+choroid] and blood from three deceased age-related macular degeneration (AMD) subjects. Entire mitochondrial genomes were analyzed for low-frequency heteroplasmy SNPs using NGS technology that independently sequenced both mtDNA strands. This deep sequencing method (average sequencing depth of 30,000; range 1,000-100,000) can accurately differentiate low-frequency heteroplasmy SNPs from DNA modification artifacts. Twenty-three 'hot-spot' heteroplasmy mtDNA SNPs were analyzed in 222 additional blood samples.ResultsGermline homoplasmy SNPs that defined mtDNA haplogroups were consistent in the three tissues of each subject. Analyses of SNPs with <40% heteroplasmy revealed the blood had significantly greater numbers of heteroplasmy SNPs than retina alone (p≤0.05) or retina+choroid combined (p = 0.008). Twenty-three 'hot-spot' mtDNA heteroplasmy SNPs were present, with three being non-synonymous (amino acid change). Four 'hot-spot' heteroplasmy SNPs (m.1120C>T, m.1284T>C, m.1556C>T, m.7256C>T) were found in additional samples (n = 222). Five heteroplasmy SNPs (m.4104A>G, m.5320C>T, m.5471G>A, m.5474A>G, m.5498A>G) declined with age. Two heteroplasmy SNPs (m.13095T>C, m.13105A>G) increased in AMD compared to Normal samples. In the heteroplasmy SNPs, very few transversion mutations (purine to pyrimidine or vice versa, associated with oxidative damage) were found and the majority were transition changes (purine to purine or pyrimidine to pyrimidine, associated with replication errors).ConclusionWithin an individual, the blood, retina and [RPE+choroid] contained identical homoplasmy SNPs representing inherited germline mtDNA haplogroup. NGS methodology showed significantly more mtDNA heteroplasmy SNPs in blood compared to retina and [RPE+choroid], suggesting the latter tissues have substantial protection. Significantly higher heteroplasmy levels of m.13095T>C and m.13105A>G may represent potential AMD biomarkers. Finally, high levels of transition mutations suggest that accumulation of heteroplasmic SNPs may occur through replication errors rather than oxidative damage
Low frequency mitochondrial DNA heteroplasmy SNPs in blood, retina, and [RPE+choroid] of age-related macular degeneration subjects
Purpose
Mitochondrial (mt) DNA damage is associated with age-related macular degeneration (AMD) and other human aging diseases. This study was designed to quantify and characterize mtDNA low-frequency heteroplasmy single nucleotide polymorphisms (SNPs) of three different tissues isolated from AMD subjects using Next Generation Sequencing (NGS) technology.
Methods
DNA was extracted from neural retina, [RPE+choroid] and blood from three deceased age-related macular degeneration (AMD) subjects. Entire mitochondrial genomes were analyzed for low-frequency heteroplasmy SNPs using NGS technology that independently sequenced both mtDNA strands. This deep sequencing method (average sequencing depth of 30,000; range 1,000–100,000) can accurately differentiate low-frequency heteroplasmy SNPs from DNA modification artifacts. Twenty-three ‘hot-spot’ heteroplasmy mtDNA SNPs were analyzed in 222 additional blood samples.
Results
Germline homoplasmy SNPs that defined mtDNA haplogroups were consistent in the three tissues of each subject. Analyses of SNPs with <40% heteroplasmy revealed the blood had significantly greater numbers of heteroplasmy SNPs than retina alone (p≤0.05) or retina+choroid combined (p = 0.008). Twenty-three ‘hot-spot’ mtDNA heteroplasmy SNPs were present, with three being non-synonymous (amino acid change). Four ‘hot-spot’ heteroplasmy SNPs (m.1120C>T, m.1284T>C, m.1556C>T, m.7256C>T) were found in additional samples (n = 222). Five heteroplasmy SNPs (m.4104A>G, m.5320C>T, m.5471G>A, m.5474A>G, m.5498A>G) declined with age. Two heteroplasmy SNPs (m.13095T>C, m.13105A>G) increased in AMD compared to Normal samples. In the heteroplasmy SNPs, very few transversion mutations (purine to pyrimidine or vice versa, associated with oxidative damage) were found and the majority were transition changes (purine to purine or pyrimidine to pyrimidine, associated with replication errors).
Conclusion
Within an individual, the blood, retina and [RPE+choroid] contained identical homoplasmy SNPs representing inherited germline mtDNA haplogroup. NGS methodology showed significantly more mtDNA heteroplasmy SNPs in blood compared to retina and [RPE+choroid], suggesting the latter tissues have substantial protection. Significantly higher heteroplasmy levels of m.13095T>C and m.13105A>G may represent potential AMD biomarkers. Finally, high levels of transition mutations suggest that accumulation of heteroplasmic SNPs may occur through replication errors rather than oxidative damage.
</jats:sec
- …
