60 research outputs found

    Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    Get PDF
    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle

    Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The archaellum is the macromolecular machinery that Archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.This project was funded by the Max Planck Society (BD, JV, WK), the University of Exeter Research Fellow’s Startup grant (BD), the ERC starting grant ‘ARCHAELLUM’ (511323; SVA) and the University of Regensburg (ReR, RaR, AB

    Yersinia adhesins: an arsenal for infection

    Get PDF
    The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbours three recognised human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, their functions and putative roles in the infection process

    Type II secretion system: A magic beanstalk or a protein escalator

    Get PDF
    AbstractType II protein secretion systems (T2SS) are molecular machines that promote specific transport of folded periplasmic proteins in Gram-negative bacteria, across a dedicated channel in the outer membrane. Secreted substrates, released to the milieu or displayed on the cell surface, contribute to bacterial adaptation to a range of habitats, from deep-sea waters to animal and plant tissues. The past decade has seen remarkable progress in structural, biochemical and functional analysis of T2SS and related systems, bringing new mechanistic insights into these dynamic complexes. This review focuses on recent advances in the field, and discusses open questions regarding the secretion mechanism. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey

    The type II secretion system – a dynamic fiber assembly nanomachine

    No full text
    International audienceType II secretion systems (T2SSs) share common origins and structure with archaeal flagella (archaella) and pili, bacterial competence systems and type IV pili. All of these systems use a conserved ATP-powered machinery to assemble helical fibers that are anchored in the plasma membrane. The T2SSs assemble pseudopili, periplasmic filaments that promote extracellular secretion of folded periplasmic proteins. Comparative analysis of T2SSs and related fiber assembly nanomachines might provide important clues on their functional specificities and dynamics. This review focuses on recent developments in the study of pseudopilus structure and biogenesis, and discusses mechanistic models of pseudopilus function in protein secretion

    Distinct Docking and Stabilization Steps of the Pseudopilus Conformational Transition Path Suggest Rotational Assembly of Type IV Pilus-like Fibers

    Get PDF
    SummaryThe closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily

    An automatic tool to analyze and cluster macromolecular conformations based on self-organizing maps.

    No full text
    International audienceSampling the conformational space of biological macromolecules generates large sets of data with considerable complexity. Data-mining techniques, such as clustering, can extract meaningful information. Among them, the self-organizing maps (SOMs) algorithm has shown great promise; in particular since its computation time rises only linearly with the size of the data set. Whereas SOMs are generally used with few neurons, we investigate here their behavior with large numbers of neurons. We present here a python library implementing the full SOM analysis workflow. Large SOMs can readily be applied on heavy data sets. Coupled with visualization tools they have very interesting properties. Descriptors for each conformation of a trajectory are calculated and mapped onto a 3D landscape, the U-matrix, reporting the distance between neighboring neurons. To delineate clusters, we developed the flooding algorithm, which hierarchically identifies local basins of the U-matrix from the global minimum to the maximum. Availability and implementation: The python implementation of the SOM library is freely available on github: https://github.com/bougui505/SOM. [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
    corecore