202 research outputs found
Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias.
International audienceBACKGROUND: Classical organic acidurias including methylmalonic aciduria (MMA), propionic aciduria (PA) and isovaleric aciduria (IVA) are severe inborn errors of the catabolism of branched-chain amino acids and odd-numbered chain fatty acids, presenting with severe complications. METHODS: This study investigated the long-term outcome of 80 patients with classical organic aciduria (38 with MMA, 24 with PA and 18 with IVA) by integrating clinical, radiological, biochemical and genetic data. RESULTS: Patients were followed-up for a mean of 14 years [age 3.3-46.3 years]. PA included a greater number of patients with abnormal neurological examination (37% in PA, 24% in MMA and 0% in IVA), lower psychometric scores (abnormal evaluation at age 3 years in 61% of patients with PA versus 26% in MMA and 18% in IVA) and more frequent basal ganglia lesions (56% of patients versus 36% in MMA and 17% in IVA). All patients with IVA presented a normal neurological examination and only 1/3 presented cognitive troubles. Prognosis for MMA was intermediate. Biochemical metabolite analysis excluding acute decompensations revealed significant progressive increases of glycine, alanine and glutamine particularly in PA and possibly in MMA but no correlation with neurological outcome. A significant increase of plasma methylmalonic acid was found in MMA patients with intellectual deficiency (mean level of 199 mumol/L versus 70 mumol/L, p < 0.05), with an estimated significant probability of severe outcome for average levels between birth and age 6 years above 167 mumol/L. Urinary 3-hydroxypropionate (3-HP) levels were significantly higher in PA patients with intellectual deficiency (mean level of 68.9 mumol/mmol of creatinine versus 34.6 mumol/mmol of creatinine, p < 0.01), with an estimated significant probability of severe outcome for average levels between birth and age 6 years above 55 mumol/mmol. As for molecular analysis, prognosis of MMA patients with mutations involving the MMAA gene was better compared to patients with mutations involving the MUT gene. CONCLUSION: Propionic aciduria had the most severe neurological prognosis. Our radiological and biochemical data are consistent with a mitochondrial toxicity mechanism. Follow-up plasma MMA and urinary 3-HP levels may have prognostic significance calling for greater efforts to optimize long-term management in these patients
14q32.11 microdeletion including CALM1, TTC7B, PSMC1, and RPS6KA5:A new potential cause of developmental and language delay in three unrelated patients
Three unrelated patients with similar microdeletions of chromosome 14q32.11 with shared phenotypes including language and developmental delay, and four overlapping genes -CALM1, TTC7B, PSMC1, and RPS6KA5 have been presented. All four genes are expressed in the brain and have haploinsufficiency scores, which reflect low tolerance to loss of function variation. An insight on the genes in the overlapping region, which may influence the resulting phenotype has been provided. Given the three patients' similar phenotypes and lack of normal variation in this region, it was suggested that this microdeletion may be associated with developmental and language delay.</p
A mutational hotspot in TUBB2A associated with impaired heterodimer formation and severe brain developmental disorders
IntroductionMicrotubules are essential components of the neuronal cytoskeleton. The α- and β-tubulins, variably expressed in the central nervous system, play key roles in neurogenesis and brain development. Pathogenic variants in TUBB2A have recently been identified as an ultra-rare cause of pediatric neurodevelopmental disorders (NDDs). However, the neurological and behavioral manifestations, genotype–phenotype correlations, and underlying disease mechanisms remain poorly understood due to the limited number of reported families.MethodsWe describe a cohort of families presenting with microcephaly, global developmental delay, speech impairment, seizures and/or EEG abnormalities, movement disorders and severe behavioral disorders. Clinical assessments and brain imaging studies were conducted over a 10-year follow-up period. Genetic analysis was performed via whole-exome sequencing (WES), and structural modeling was used to investigate the functional impact of the identified variants.ResultsWES revealed a novel recurrent heterozygous pathogenic variant in TUBB2A (NM_001069.3:c.1172G > A; NP_001060.1:p.Arg391His), identified as the cause of disease in multiple affected individuals from unrelated families. Comparative analysis with previously reported TUBB2A de novo variants confirmed that this novel recurrent mutation affects a highly conserved Arg391 residue within the longitudinal E-site heterodimer interface. Computational modeling demonstrated that the variant disrupts α/β-tubulin heterodimer formation, impairing binding stability at this critical interaction site.DiscussionOur findings expand the phenotypic and genotypic spectrum of TUBB2A-related disorders and identify Arg391 as a mutational hotspot linked to severe brain developmental disorders due to aberrant tubulin dynamics, highlighting the disruption of the α/β-tubulin heterodimer formation as the disease mechanism associated to this novel hotspot variant. These results provide new insights into disease mechanisms and offer a foundation for potential future therapeutic approaches aimed at stabilizing α/β-tubulin interactions
<i>USP27X </i>variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
Possible association of 16p11.2 copy number variation with altered lymphocyte and neutrophil counts
Recurrent copy-number variations (CNVs) at chromosome 16p11.2 are associated with neurodevelopmental diseases, skeletal system abnormalities, anemia, and genitourinary defects. Among the 40 protein-coding genes encompassed within the rearrangement, some have roles in leukocyte biology and immunodeficiency, like SPN and CORO1A. We therefore investigated leukocyte differential counts and disease in 16p11.2 CNV carriers. In our clinically-recruited cohort, we identified three deletion carriers from two families (out of 32 families assessed) with neutropenia and lymphopenia. They had no deleterious single-nucleotide or indel variant in known cytopenia genes, suggesting a possible causative role of the deletion. Noticeably, all three individuals had the lowest copy number of the human-specific BOLA2 duplicon (copy-number range: 3-8). Consistent with the lymphopenia and in contrast with the neutropenia associations, adult deletion carriers from UK biobank (n = 74) showed lower lymphocyte (Padj = 0.04) and increased neutrophil (Padj = 8.31e-05) counts. Mendelian randomization studies pinpointed to reduced CORO1A, KIF22, and BOLA2-SMG1P6 expressions being causative for the lower lymphocyte counts. In conclusion, our data suggest that 16p11.2 deletion, and possibly also the lowest dosage of the BOLA2 duplicon, are associated with low lymphocyte counts. There is a trend between 16p11.2 deletion with lower copy-number of the BOLA2 duplicon and higher susceptibility to moderate neutropenia. Higher numbers of cases are warranted to confirm the association with neutropenia and to resolve the involvement of the deletion coupled with deleterious variants in other genes and/or with the structure and copy number of segments in the CNV breakpoint regions
De novo variants predicting haploinsufficiency for DIP2C are associated with expressive speech delay.
The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype
Establishing the phenotypic spectrum of ZTTK syndrome by analysis of 52 individuals with variants in SON
Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated. We present the phenotypic abnormalities in 52 individuals, including 17 individuals who have not been reported before. In total, loss-of-function variants were detected in 49 individuals (de novo in 47, inheritance unknown in 2), and in 3, a missense variant was observed (2 de novo, 1 inheritance unknown). Phenotypic abnormalities, systematically collected and analyzed in Human Phenotype Ontology, were found in all organ systems. Significant inter-individual phenotypic variability was observed, even in individuals with the same recurrent variant (n = 13). SON haploinsufficiency was previously shown to lead to downregulation of downstream genes, contributing to specific phenotypic features. Similar functional analysis for one missense variant, however, suggests a different mechanism than for heterozygous loss-of-function. Although small in numbers and while pathogenicity of these variants is not certain, these data allow for speculation whether de novo missense variants cause ZTTK syndrome via another mechanism, or a separate overlapping syndrome. In conclusion, heterozygous loss-of-function variants in SON define a recognizable syndrome, ZTTK, associated with a broad, severe phenotypic spectrum, characterized by a large inter-individual variability. These observations provide essential information for affected individuals, parents, and healthcare professionals to ensure appropriate clinical management
Autosomal recessive primary microcephaly due to ASPM mutations: An update.
Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities
- …
